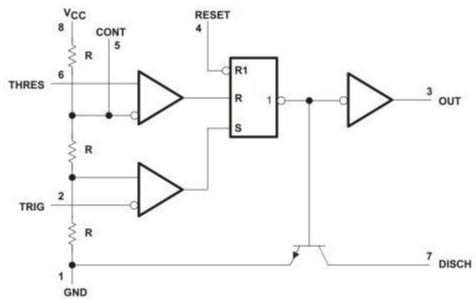
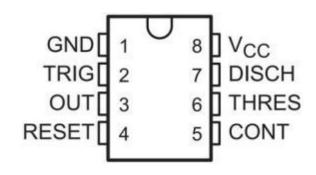
GENERAL PURPOSE TIMERS

DESCRIPTION


NE555 is a general purpose timer. It is an analog integrated circuit that combines analog signals with logic functions. It can generate precise time delays and oscillations. This timing circuit can be applied to many aspects such as electronic control, electronic detection and electronic alarm. For example: it can constitute an accurate timer, pulse generator, time delay generator, pulse width modulation, phase modulation and sawtooth voltage generator, etc. In the peripheral equipment of a microcomputer, it can be used to constitute a clock generator to generate the required clock pulse.

FEATURES

- The static current is small, the typical value is 2.7mA.
- The chip disable input can make the IC power down
- The static current is small when power is off, the typical value is 65uA.
- Can drive a variety of impedance speakers more than 8 Ω
- When using a 32 Ω load, the output power exceeds 250mW
- Low distortion 0.5% TYP.
- In the voice band, the gain can be adjusted from 0dB to 46dB
- Fewer peripheral components Package SOP8/DIP8


Functional block diagram and pin description

1.1 Functional block diagram

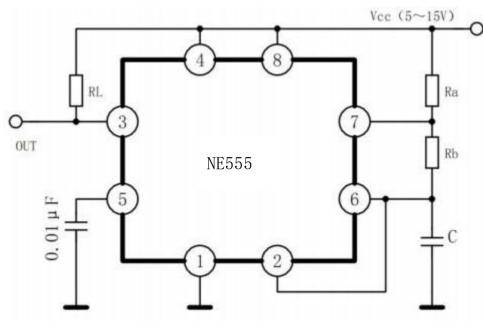
1.2 Pin description

第1页共5页

ELECTRICAL CHARACTERISTICS

2.1 Absolute maximum ratings over operating free-air temperature range

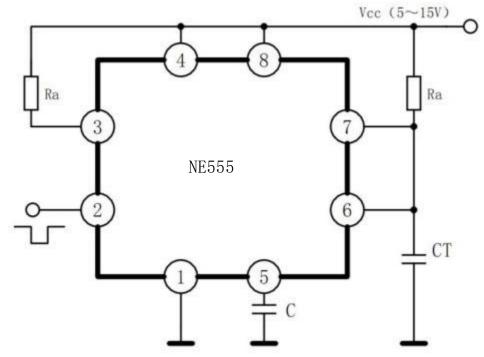
PARAMETER	SYMBOL	VALUE	UNITS
Supply voltage	VCC	18	V
Power consumption (DIP)	PD	600	mW
Operating free-air temperature range	Tamb	0~70	°C
Storage temperature range	Tstg	-65 ~ 150	°C


2. 2 Electrical characteristics ,Tamb=25°C(unless otherwise noted)

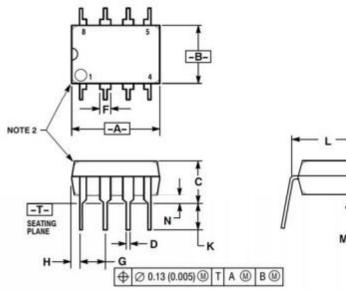
	SYMBO TEST CONDIT		VALUE			IDUTO	
PARAMETER		TEST CONDITIONS	MIN	ТҮР	MAX	UNITS	
Supply current	ICCQ	VCC=5V $RL = \infty$		3	6	mA	
		VCC=15V RL= ∞		10	15		
Supply voltage	VCC		4.5		16	V	
THRES voltage level	VTH			0.667*Vcc		V	
THRES current	ITH			0.1	0.25	uA	
TRIG voltage	VTR	VCC=15V		5			
level		VCC=5V		1.67		V	
TRIG current	ITR			0.5	2	uA	
RESET voltage level	VR		0.4	0.5	1	V	
RESET current	IR			0.1	0.4	mA	
CONT voltage	VCON	VCC=15V	9	10	11	V	
		VCC=5V	2.6	3.33	4		
DISCH switch off-state current	I7(IEAK)	High-level output		20	100	nA	
DISCH saturation pressure drop	V7(SAT)	Low-level output VCC 15V I7 = 15mA		180		mV	

		Low-level output VCC= 4.5V I7 = 4.5mA		80	200		
High-level output		VCC= 15V IS = 200mA		12.5			
	VOH	VCC= 15V IS = 100mA	12.75	13.3		v	
voltage		VCC = 5V IS = 100mA	2.75	3.3			
		VCC=15V ISINK=10mA		0.1	0.25		
		VCC=15V ISINK=50mA		0.4	0.75		
Low-level output voltage	VOL	VCC=15V ISINK=100mA		2	2.5	v	
		VCC=15V ISINK=200mA		2.5			
		VCC=5V ISINK=5mA		0.25	0.35		
Output rise time	tr			100			
Output fall time	tf			100		nS	
Initial accuracy	ΔtE			1		%	
Rate of change							
with temperature	ΔtT			50		ppm/°C	
drift		Monostable					
Rate of change		RA.RB=1~100k					
with voltage	ΔtV	C=0.1 uF		0.1		%/V	
drift		VCC= 5V(15V)					
Accuracy within							
operating temperature range	ΔtOPr			1.5		%	
Initial accuracy	ΔtE1			2.25		%	
Rate of change							
with temperature	ΔtT1			150		ppm/°C	
drift		Astable					
Rate of change		RA.RB=1~100k					
with voltage	∆tV1	C=0.1 uF		0.3		%/V	
drift		Vcc=5V(15V)					
Accuracy within							
operating temperature range	∆tOpr1			3		%	

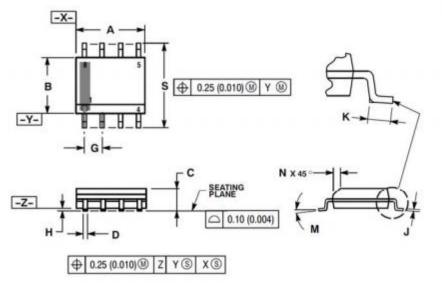
APPLICATION CIRCUIT AND APPLICATION INSTRUCTIONS


3.1 Oscillator application circuit

Oscillation period:T= $0.693(R_{\text{A}}+2R_{\text{B}})C$


Duty: $D=R_B/(R_A+2R_B)$

3. 2 Monostable application circuit


MECHANICAL DIMENSIONS

отомо

J M

DIP8

SOP8

NE555

NOTES: 1. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 2. PACKAGE CONTOUR OPTIONAL (ROUND OR SOLIARE CORNERS). 3. DIMENSIONING AND TOLERANCING PER ANSI VIA 641 1092 Y14.5M, 1982.

DIM	MILLIMETERS		INCHES		
	MIN	MAX	MIN	MAX	
A	9.40	10.16	0.370	0.400	
B	6.10	6.60	0.240	0.260	
C	3.94	4.45	0.155	0.175	
D	0.38	0.51	0.015	0.020	
F	1.02	1.78	0.040	0.070	
G	2.54 BSC		0.100 BSC		
H	0.76	1.27	0.030	0.050	
1	0.20	0.30	800.0	0.012	
K	2.92	3.43	0.115	0.135	
L	7.62 BSC		0.300	BSC	
M		10°		10	
N	0.76	1.01	0.030	0.040	

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION ALLOWABLE DAMBAR PROTRUSION GI IALL DE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.

DIM	MILLIM	ETERS	INCHES		
	MIN	MAX	MIN	MAX	
A	4.80	5.00	0.189	0,197	
В	3.80	4.00	0.150	0.157	
C	1.35	1.75	0.053	0.069	
D	0.33	0.51	0.013	0.020	
G	1.27 BSC		0.050 BSC		
н	0.10	0.25	0.004	0.010	
J	0.19	0.25	0.007	0.010	
ĸ	0.40	1.27	0.016	0.050	
M	0	8 *	0 =	8	
N	0.25	0.50	0.010	0.020	
S	5.80	6.20	0.228	0.244	