ESD Protection Diode

Low Capacitance ESD Protection Diodes for High Speed Data Line

The ESD7205 ESD protection diode array is designed to protect high speed data lines from ESD. Ultra-low capacitance and low ESD clamping voltage make this device an ideal solution for protecting voltage sensitive high speed data lines. The small form factor, flow-through style package allows for easy PCB layout and matched trace lengths necessary to maintain consistent impedance between high speed differential lines such as Ethernet and LVDS present in automotive camera modules.

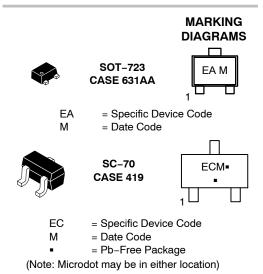
Features

- Low Capacitance (0.4 pF Typical, I/O to GND)
- Diode capacitance matching
- Protection for the Following IEC Standards: IEC 61000-4-2 Level 4 (ESD)
- Low ESD Clamping Voltage (12 V Typical, +16 A TLP, I/O to GND)
- SZ Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

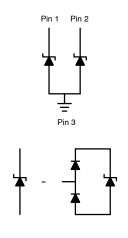
Typical Applications

- 100BASE-T1 / OPEN Alliance BroadR-Reach Automotive Ethernet
- 10/100/1000BASE-T1 Ethernet
- LVDS
- Automotive USB 2.0/3.0
- High Speed Differential Pairs

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)


Rating	Symbol	Value	Unit
Operating Junction Temperature Range	TJ	-55 to +150	°C
Storage Temperature Range	T _{stg}	-55 to +150	°C
Lead Solder Temperature – Maximum (10 Seconds)	ΤL	260	°C
$\begin{array}{c} \text{IEC } 61000-4-2 \ \text{Contact} \\ \text{IEC } 61000-4-2 \ \text{Air} \\ \text{ISO } 10605 \ 330 \ \text{pF} \ / \ 330 \ \Omega \ \text{Contact} \\ \text{ISO } 10605 \ 330 \ \text{pF} \ / \ 2 \ \text{k}\Omega \ \text{Contact} \\ \text{ISO } 10605 \ 150 \ \text{pF} \ / \ 2 \ \text{k}\Omega \ \text{Contact} \\ \end{array}$	ESD	$\pm 25 \\ \pm 25 \\ \pm 20 \\ \pm 30 \\ \pm 30$	kV

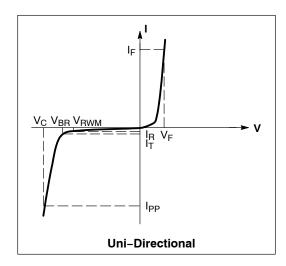
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.



ON Semiconductor®

www.onsemi.com

ORDERING INFORMATION

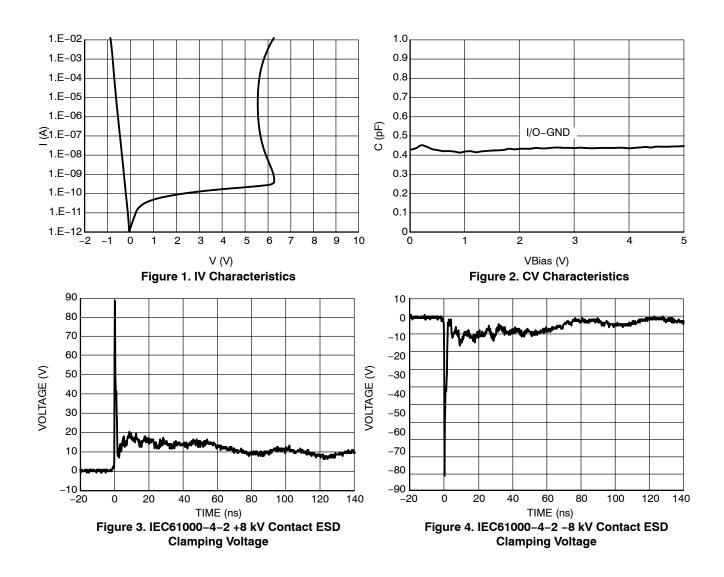

See detailed ordering, marking and shipping information in the package dimensions section on page 6 of this data sheet.

ELECTRICAL CHARACTERISTICS

(T_A = 25°C unless otherwise noted)

· · ·	'
Symbol	Parameter
I _{PP}	Maximum Reverse Peak Pulse Current
V _C	Clamping Voltage @ I _{PP}
V _{RWM}	Working Peak Reverse Voltage
I _R	Maximum Reverse Leakage Current @ V _{RWM}
V _{BR}	Breakdown Voltage @ I _T
Ι _Τ	Test Current

*See Application Note AND8308/D for detailed explanations of datasheet parameters.



ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise specified)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Reverse Working Voltage	V _{RWM}	I/O Pin to GND		5.0	V	
Breakdown Voltage	V _{BR}	I _T = 1 mA, I/O Pin to GND 5.2 6.0		8.0	V	
Reverse Leakage Current	I _R	V _{RWM} = 5.0 V, I/O Pin to GND	to GND		1	μΑ
Clamping Voltage (Note 1)	V _C	IEC61000-4-2, ±8 kV Contact	See	Figures 3 a	nd 4	
Clamping Voltage TLP (Note 2)	V _C	I _{PP} = 8 A I _{PP} = 16 A I _{PP} = -8 A I _{PP} = -16 A	10 12.5 -4.0 -8.0			V
Junction Capacitance Match	ΔC_{J}	VR = 0 V, f = 1 MHz between I/O1 to GND and I/O 2 to GND	d I/O 5 10		%	
Junction Capacitance	CJ	VR = 0 V, f = 1 MHz between I/O Pins and GND ESD7205DT5G ESD7205WTT1G		0.34 0.47	0.55 0.85	pF
		VR = 0 V, f = 1 MHz between I/O Pins ESD7205DT5G ESD7205WTT1G		0.20 0.23	0.35 0.40	
3dB Bandwidth	f _{BW}	R _L = 50 Ω		5		GHz

For test procedure see Figures 5 and 6 and application note AND8307/D.
ANSI/ESD STM5.5.1 – Electrostatic Discharge Sensitivity Testing using Transmission Line Pulse (TLP) Model. TLP conditions: Z₀ = 50 Ω, t_p = 100 ns, t_r = 4 ns, averaging window; t₁ = 30 ns to t₂ = 60 ns.

ESD7205

IEC 61000-4-2 Spec.

Level	Test Volt- age (kV)	First Peak Current (A)	Current at 30 ns (A)	Current at 60 ns (A)
1	2	7.5	4	2
2	4	15	8	4
3	6	22.5	12	6
4	8	30	16	8

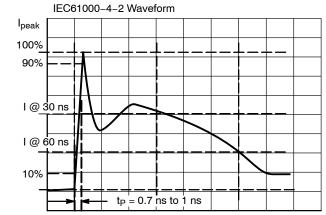


Figure 5. IEC61000-4-2 Spec

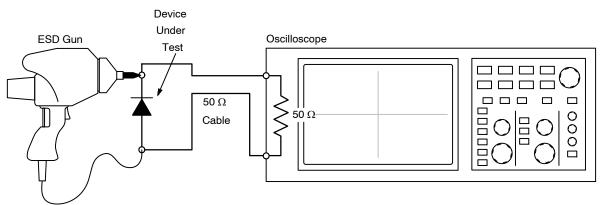
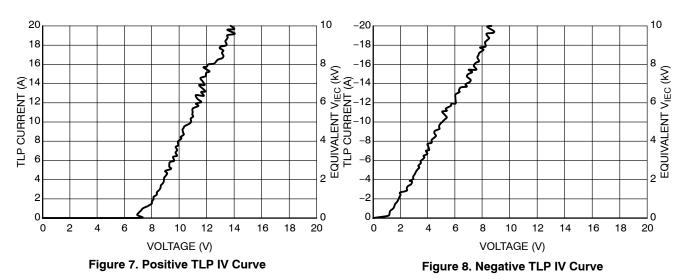


Figure 6. Diagram of ESD Clamping Voltage Test Setup


The following is taken from Application Note AND8308/D – Interpretation of Datasheet Parameters for ESD Devices.

ESD Voltage Clamping

For sensitive circuit elements it is important to limit the voltage that an IC will be exposed to during an ESD event to as low a voltage as possible. The ESD clamping voltage is the voltage drop across the ESD protection diode during an ESD event per the IEC61000–4–2 waveform. Since the IEC61000–4–2 was written as a pass/fail spec for larger

systems such as cell phones or laptop computers it is not clearly defined in the spec how to specify a clamping voltage at the device level. ON Semiconductor has developed a way to examine the entire voltage waveform across the ESD protection diode over the time domain of an ESD pulse in the form of an oscilloscope screenshot, which can be found on the datasheets for all ESD protection diodes. For more information on how ON Semiconductor creates these screenshots and how to interpret them please refer to AND8307/D.

ESD7205

NOTE: TLP parameter: $Z_0 = 50 \Omega$, $t_p = 100 ns$, $t_r = 300 ps$, averaging window: $t_1 = 30 ns$ to $t_2 = 60 ns$.

Transmission Line Pulse (TLP) Measurement

Transmission Line Pulse (TLP) provides current versus voltage (I–V) curves in which each data point is obtained from a 100 ns long rectangular pulse from a charged transmission line. A simplified schematic of a typical TLP system is shown in Figure 9. TLP I–V curves of ESD protection devices accurately demonstrate the product's ESD capability because the 10s of amps current levels and under 100 ns time scale match those of an ESD event. This is illustrated in Figure 10 where an 8 kV IEC 61000–4–2 current waveform is compared with TLP current pulses at 8 A and 16 A. A TLP I–V curve shows the voltage at which the device turns on as well as how well the device clamps voltage over a range of current levels.

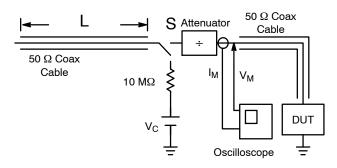


Figure 9. Simplified Schematic of a Typical TLP System

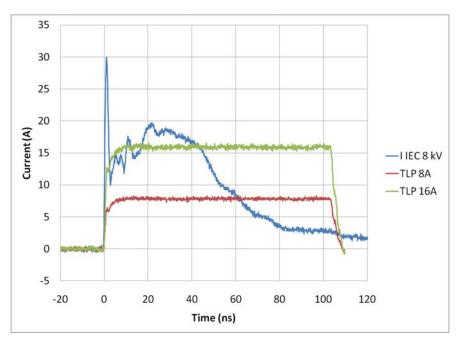
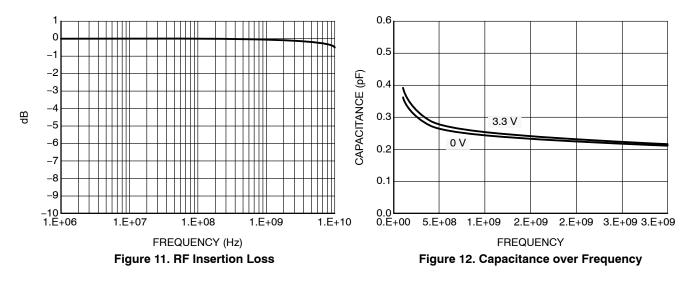
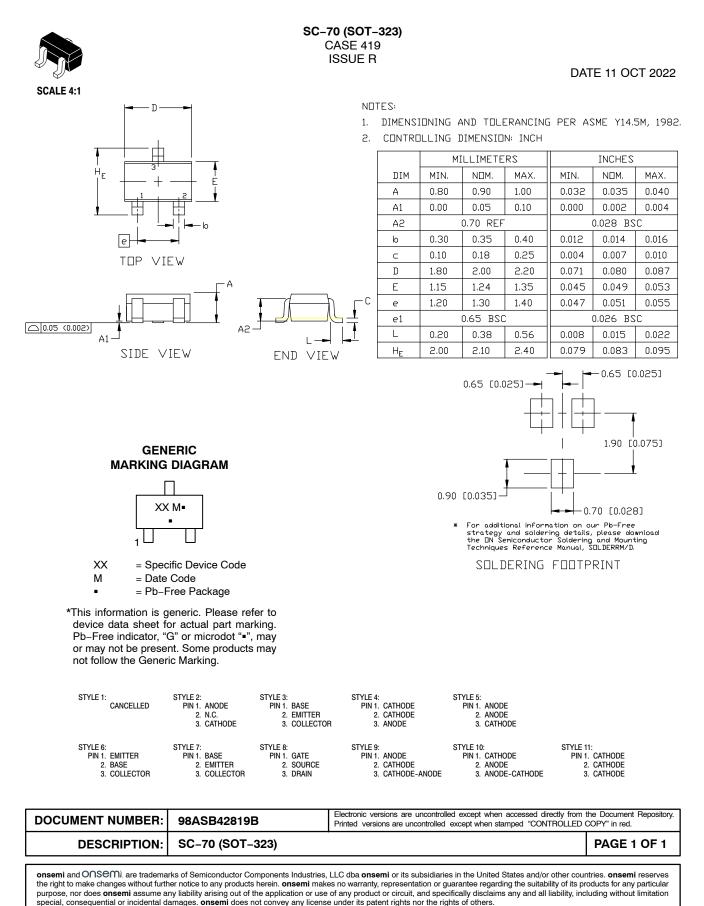



Figure 10. Comparison Between 8 kV IEC 61000-4-2 and 8 A and 16 A TLP Waveforms

ESD7205

ORDERING INFORMATION

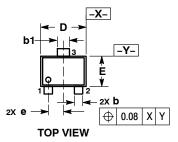

Device	Package	Shipping [†]
ESD7205DT5G	SOT-723 (Pb-Free)	8000 / Tape & Reel
SZESD7205DT5G*	SOT-723 (Pb-Free)	8000 / Tape & Reel
ESD7205WTT1G	SOT-323 (Pb-Free)	3000 / Tape & Reel
SZESD7205WTT1G*	SOT-323 (Pb-Free)	3000 / Tape & Reel

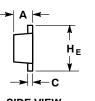
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*SZ Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

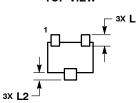
MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

onsemi




DUSEU

DATE 10 AUG 2009


SCALE 4:1

SOT-723 CASE 631AA **ISSUE D**

SIDE VIEW

BOTTOM VIEW

XX

Μ

GENERIC

MARKING DIAGRAM*

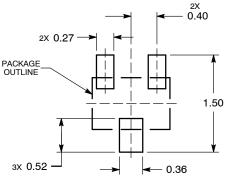
XX M

= Date Code

not follow the Generic Marking.

*This information is generic. Please refer to

device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may


or may not be present. Some products may

= Specific Device Code

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.

	MILLIMETERS		
DIM	MIN	NOM	MAX
Α	0.45	0.50	0.55
b	0.15	0.21	0.27
b1	0.25	0.31	0.37
С	0.07	0.12	0.17
D	1.15	1.20	1.25
Е	0.75	0.80	0.85
е		0.40 BSC)
ΗE	1.15	1.20	1.25
Г	0.29 REF		
L2	0.15	0.20	0.25

RECOMMENDED **SOLDERING FOOTPRINT***

DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLE 1:	STYLE 2:	STYLE 3:	STYLE 4:	STYLE 5:
PIN 1. BASE	PIN 1. ANODE	PIN 1. ANODE	PIN 1. CATHODE	PIN 1. GATE
2. EMITTER	2. N/C	2. ANODE	2. CATHODE	2. SOURCE
3. COLLECTOR	3. CATHODE	3. CATHODE	3. ANODE	3. DRAIN

DOCUMENT NUMBER:	98AON12989D Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	DESCRIPTION: SOT-723 PAGE		PAGE 1 OF 1	
onsemi and ONSEMI. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights or the rights of others.				

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>