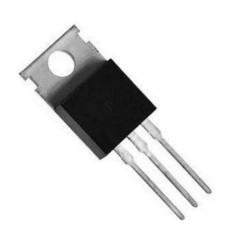
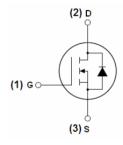


Description

The IRF640NPBF-ML usesad vanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.


General Features

• V_{DS} =200V, I_{D} =18A $R_{DS(ON)} < 180m\Omega @ V_{GS}$ =10V (Typ:140m Ω)


- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

TO-220C

Schematic Diagram

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V _{DS}	200	V
Gate-Source Voltage	V _G S	±20	V
Drain Current-Continuous	I _D	18	Α
Drain Current-Continuous(T _C =100°C)	I _D (100℃)	13	Α
Pulsed Drain Current	I _{DM}	72	Α
Maximum Power Dissipation	P _D	150	W
Single pulse avalanche energy (Note 5)	E _{AS}	250	mJ
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	°C

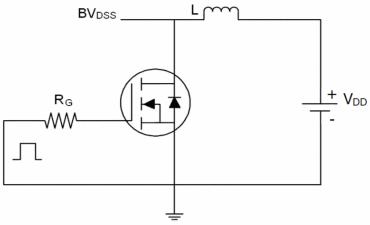
WWW.MOSLEADER.COM Page 1 of 5

Thermal Characteristic

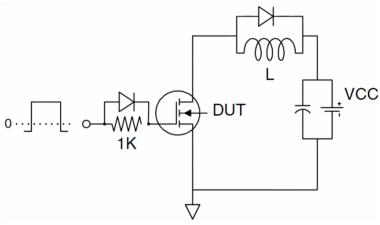
Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit	
Off Characteristics	•		•				
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	200	220	-	V	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =200V,V _{GS} =0V	-	-	1	μA	
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA	
On Characteristics (Note 3)	·		•				
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2	3	4	V	
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =15A	-	140	180	mΩ	
Forward Transconductance	g FS	V _{DS} =50V,I _D =11A	25	-	-	S	
Dynamic Characteristics (Note4)	·						
Input Capacitance	C _{lss}	V _{DS} =25V,V _{GS} =0V, F=1.0MHz		4200		PF	
Output Capacitance	Coss			163		PF	
Reverse Transfer Capacitance	C _{rss}			75		PF	
Switching Characteristics (Note 4)			•				
Turn-on Delay Time	t _{d(on)}	V_{DD} =100V, I_{D} =15A V_{GS} =10V, R_{GEN} =2.5 Ω	-	10	-	nS	
Turn-on Rise Time	t _r		-	18	-	nS	
Turn-Off Delay Time	t _{d(off)}		-	22	-	nS	
Turn-Off Fall Time	t _f		-	5	-	nS	
Total Gate Charge	Qg	V _{DS} =100V,I _D =15A, V _{GS} =10V		60		nC	
Gate-Source Charge	Q _{gs}			19		nC	
Gate-Drain Charge	Q_{gd}			17		nC	
Drain-Source Diode Characteristics			•			•	
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =11A	-	-	1.2	V	
Diode Forward Current (Note 2)	Is	-	-	-	18	Α	
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF = 15A	-	90	-	nS	
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note3)	-	300	-	nC	
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)					

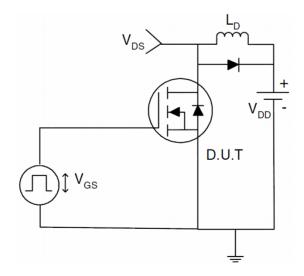
Notes:


- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production
- **5.** EAS condition: Tj=25 $^{\circ}$ C,V_{DD}=50V,V_G=10V,L=0.5mH,Rg=25 Ω

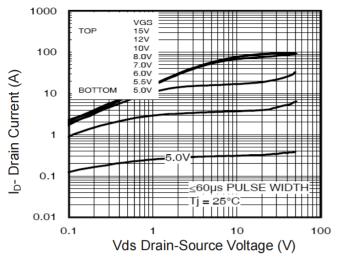
Page 2 of 5

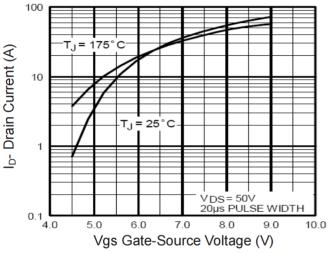


Test Circuit


1) E_{AS} test Circuit

2) Gate charge test Circuit


3) Switch Time Test Circuit


WWW.MOSLEADER.COM
Page 3 of 5

MOSLEADER

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

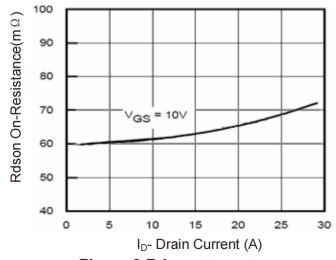


Figure 3 Rdson- Drain Current

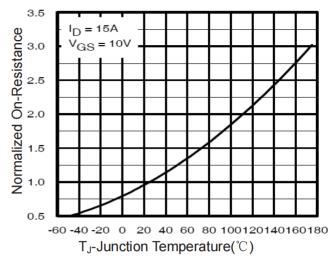


Figure 4 Rdson-JunctionTemperature

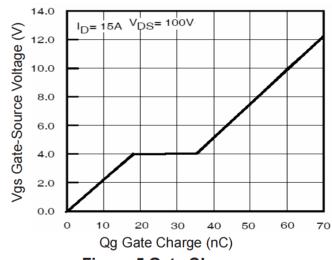


Figure 5 Gate Charge

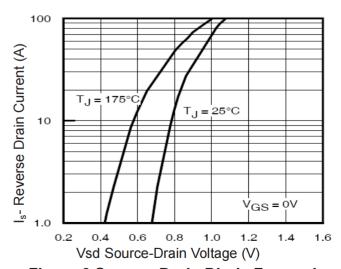


Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

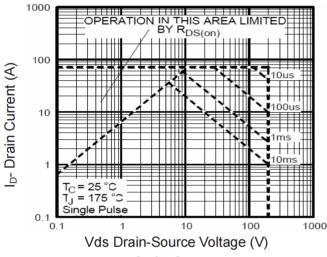


Figure 8 Safe Operation Area

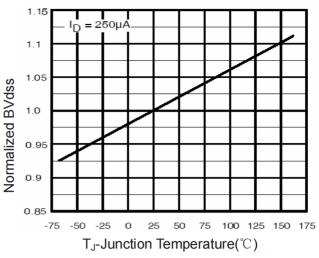


Figure 9 BV_{DSS} vs Junction Temperature

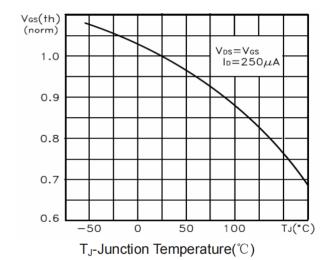


Figure 10 V_{GS(th)} vs Junction Temperature

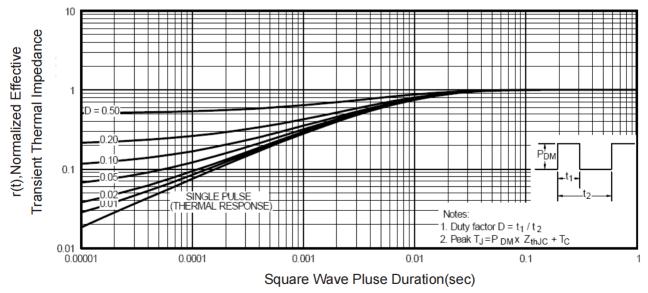


Figure 11 Normalized Maximum Transient Thermal Impedance

WWW.MOSLEADER.COM

Page 5 of 5

Disclaimer

The information presented in this document is for reference only.MOSLEADER reserves the right to make changes without notice for the specification of the products displayed herein to improve reliability, function or design or otherwise.

The product listed herein is designed to be used with ordinary electronic equipment or devices, and not designed to be used with equipment or devices which require high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), MOSLEADER or anyone on its behalf, assumes no responsibility or liability for any damages resulting from such improper use of sale.