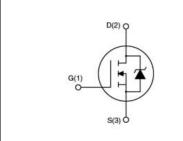


General Description:

IRF740PBF-ML, the silicon N-channel Enhanced VDMOSFETs, is obtained by the self-aligned planar Technology which reduce the conduction loss, improve switching performance and enhance the avalanche energy. The transistor can be used in various power switching circuit for system miniaturization and higher efficiency. The package form is TO-220F, which accords with the RoHS standard.

		4		
H	ea	ŤΠ	re	S:

- **►** Fast Switching
- ► Low ON Resistance(Rdson≤0. 38Ω)
- ► Low Gate Charge (Typical Data:32nC)
- ► Low Reverse transfer capacitances(Typical:8.4pF)
- ► 100% Single Pulse avalanche energy Test


Applications:

Power switch circuit of adaptor and charger.

Absolute (Tc= 250 unless otherwise specified):

$V_{ m DSS}$	400	V
I_D	10	A
$P_D (T_C = 25C)$	40	W
R _{DS(ON)} Typ	0.38	Ω

Symbol	Parameter	Rating	Units
V _{DSS}	Drain- to- Source Voltage	400	V
т	Continuous Drain Current	10	A
I_{D}	Continuous Drain Current T _C = 100 °C	6.3	A
al I _{DM}	Pulsed Drain Current	40	A
V_{GS}	Gate-to- Source Voltage	±30	V
E _{AS}	Single Pulse Avalanche Energy	580	mJ
dv/dt ^{a3}	Peak Diode Recovery dv/ dt	5.0	V/ns
Ъ	Power Dissipation	40	W
P_{D}	Derating Factor above 25 °C	0.32	W / C
T_J , T_{stg}	Operating Junction and Storage Temperature Range	150 , -55 to 150	С
$T_{ m L}$	Maximum Temperature for Soldering	300	С

Page 1 of 8

Electrical Characteristics (Tc= 25C unless otherwise specified):

OFF Characte	eristics					
Symbol	Parameter Test Conditions	The Control	Rating			Unit
Symbol		Min.	Тур.	Max .	S	
V_{DSS}	Drain to Source Breakdown Voltage	V _{GS} =0V, I _D =250μA	500			V
$\Delta BV_{DSS}/\Delta T_{J}$	Bvdss Temperature Coefficient	ID= 250 uA, Reference 250		0.6		V / C
т.	Drain to Saurea Leekage Current	$V_{DS} = 400 \text{ V}, V_{GS} = 0 \text{ V},$ $T_a = 25 \text{ C}$			1	μА
I_{DSS}	Drain to Source Leakage Current	$V_{DS} = 400 \text{V}, \ V_{GS} = 0 \text{V},$ $T_a = 125 \text{C}$			100	μA
$I_{GSS(F)}$	Gate to Source Forward Leakage	V _{GS} =+30 V			100	nA
I _{GSS(R)}	Gate to Source Reverse Leakage	V _{GS} =-30V			- 100	nA

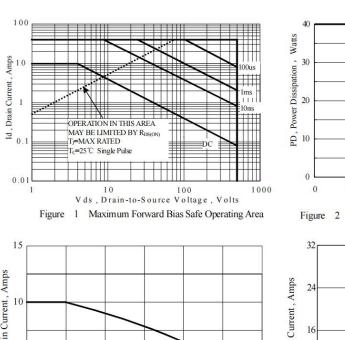
ON Characteristics							
Symbol	Parameter	Test Conditions		Rating			
	raiametei		Min.	Тур.	Max.	Units	
R _{DS(ON)}	Drain- to- Source On- Resistance	V _{GS} = 10V,I _D =5A		0.38	0 .42	Ω	
V _{GS(TH)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	2.0		4.0	V	
Pulse width $tp \le 300 \mu s$, $\delta \le 2\%$							

Dynamic (Characteristics					
Symbol	Parameter	Test Conditions		Rating		
Symbol	rarameter	Test Conditions	Min .	Тур.	Max.	Units
g_{fs}	Forward Transconductance	V_{DS} = 15V, I_{D} =5A		10		S
C_{iss}	Input Capacitance	$V_{GS} = 0V V_{DS} = 25V$ f = 1.0MHz		1620		
Coss	Output Capacitance			154		pF
C_{rss}	Reverse Transfer Capacitance			8.4		

Resistive Switching Characteristics							
Symbol	Parameter	Test Conditions	Rating			TT:4-	
Symoon	1 arameter	Test Conditions	Min .	Тур.	Max.	Units	
$t_{d(\mathrm{ON})}$	Turn- on Delay Time			26			
tr	Rise Time	$I_D = 10A$ $V_{DD} = 250V$		20			
$t_{d(\ OFF)}$	Turn- Off Delay Time	$R_G = 10\Omega$		52		ns	
t_{f}	Fall Time			21			
Q_g	Total Gate Charge			32			
Q_{gs}	Gate to Source Charge	$I_D = 10A$ $V_{DD} = 400 V$ $V_{GS} = 10 V$		7.9		nC	
Q_{gd}	Gate to Drain ("Miller") Charge			12			

WWW.MOSLEADER.COM
Page 2 of 8

Symbol	Parameter	Test Conditions	Rating			TT :
		rest Conditions	Min .	Тур.	Max .	Units
Is	Continuous Source Current (Body Diode)				10	A
I_{SM}	Maximum Pulsed Current (Body Diode)				40	A
V_{SD}	Diode Forward Voltage	I _S = 10A,V _{GS} =0V			1.5	V
t _{rr}	Reverse Recovery Time	Is= 10 A.Ti = 25C		411		ns
Qrr	Reverse Recovery Charge	$I_{S} = 10 \text{ A}, I_{J} = 23 \text{ C}$ $dI_{F}/dt = 100 \text{ A/us},$ $V_{GS} = 0 \text{ V}$		2588		n C
I _{RRM}	Reverse Recovery Current			12.6		A


Symbol	Parameter	Тур.	Units
R в JC	Junction- to- Case	3.13	C/ W
R _{θ JA}	Junction- to- Ambient	62 .5	C/ W

 $^{^{}a1}$: Repetitive rating; pulse width limited by maximum junction temperature a2 : L= 10 mH, $I_D=10$. 8A, Start $T_J{=}25\text{C}$ a3 : $I_{SD}=10\,\text{A},\text{di/dt}$ \leqslant 100 A/us, V_{DD} \leqslant BV $_{DS}$, Start $T_J{=}25\text{C}$

WWW.MOSLEADER.COM

Page 3 of 8

Characteristics Curve:

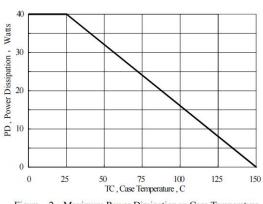
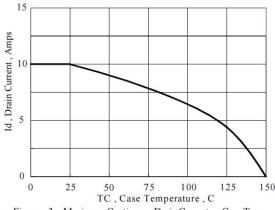



Figure 2 Maximum Power Dissipation vs Case Temperature

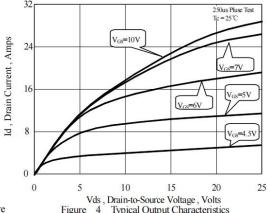
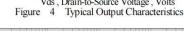



Figure 3 Maximum Continuous Drain Current vs Case Temperature

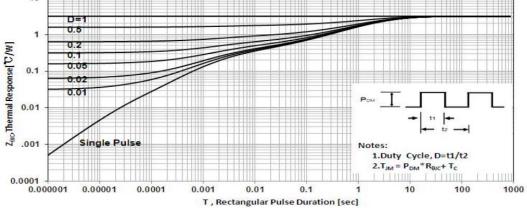


Figure 5 Maximum Effective Thermal Impendance, Junction to Case

WWW.MOSLEADER.COM Page 4 of 8

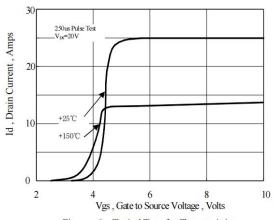


Figure 6 Typical Transfer Characteristics

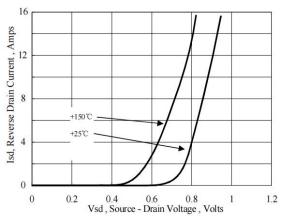


Figure 7 Typical Body Diode Transfer Characteristics

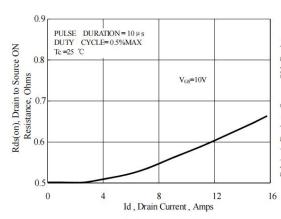


Figure 8 Typical Drain to Source ON Resistance vs Drain Current

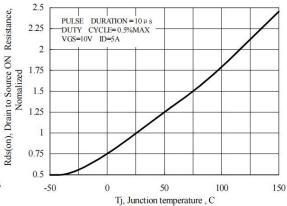
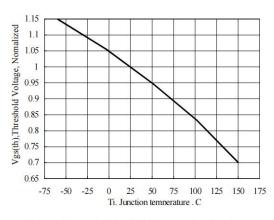



Figure 9 Typical Drian to Source on Resistance vs Junction Temperature

WWW.MOSLEADER.COM Page 5 of 8

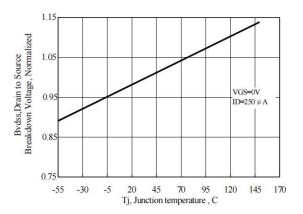


Figure 10 Typical Theshold Voltage vs Junction Temperature

Figure 11 Typical Breakdown Voltage vs Junction Temperature

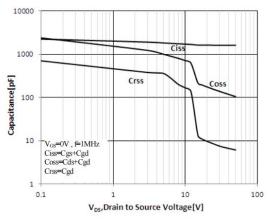


Figure 12 Typical Capacitance vs Drain to Source Voltage

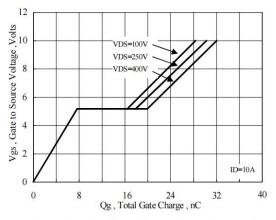


Figure 13 Typical Gate Charge vs Gate to Source Voltage

WWW.MOSLEADER.COM Page 6 of 8

Test Circuit and Waveform

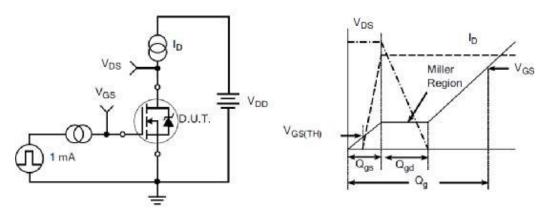


Figure 17. Gate Charge Test Circuit

Figure 18. Gate Charge Waveform

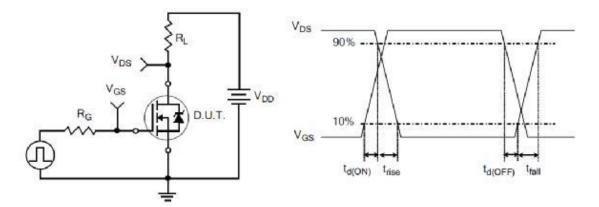


Figure 19. Resistive Switching Test Circuit

Figure 20. Resistive Switching Waveforms

WWW.MOSLEADER.COM
Page 7 of 8

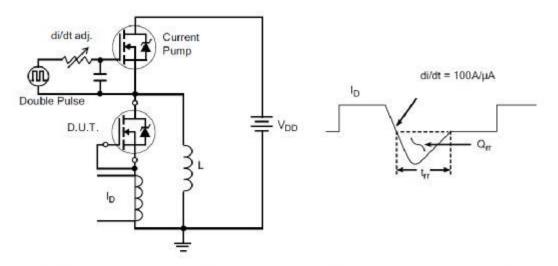


Figure 21. Diode Reverse Recovery Test Circuit

Figure 22. Diode Reverse Recovery Waveform

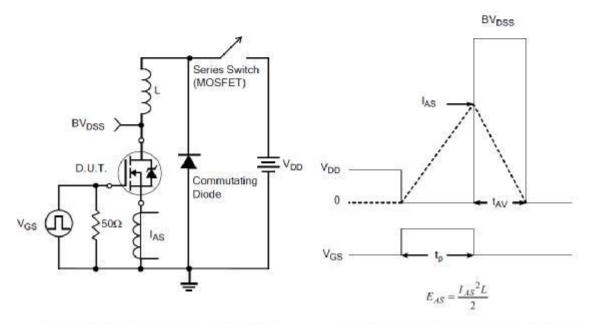


Figure 23. Unclamped Inductive Switching Test Circuit

Figure 24. Unclamped Inductive Switching Waveforms

WWW.MOSLEADER.COM
Page 8 of 8

Disclaimer

The information presented in this document is for reference only.MOSLEADER reserves the right to make changes without notice for the specification of the products displayed herein to improve reliability, function or design or otherwise.

The product listed herein is designed to be used with ordinary electronic equipment or devices, and not designed to be used with equipment or devices which require high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), MOSLEADER or anyone on its behalf, assumes no responsibility or liability for any damages resulting from such improper use of sale.