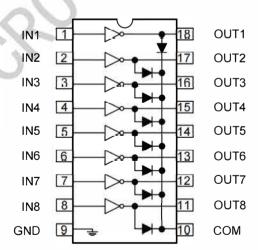
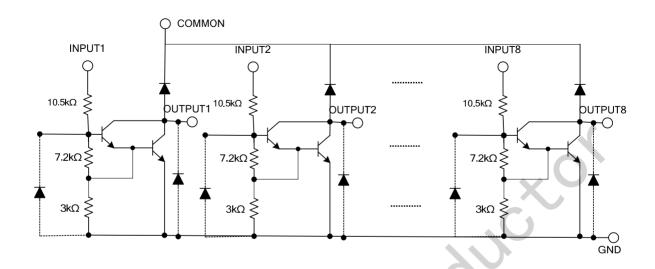

■ DESCRIPTION

The **ULN2804** is a high voltage, high current Darlington array comprised of eight NPN Darlington pairs. The device features open-collector outputs with suppression diodes for inductive loads and is ideally suited for interfacing between low-level logic circuitry and high power loads. Typical loads including relays DC motors, filament lamps, LED displays, printer hammers and high power buffers.


■ FEATURE

- * Eight Darlingtons with common emitters
- * TTL, PMOS or CMOS Compatible inputs
- * Peak output current to 500mA
- * Output voltage to 50V
- * Clamp diodes for transient suppression
- * DIP-18 and SOP-18 packages


■ MARKING

■ PIN CONFIGURATIONS

■ SCHEMATICS

■ ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATINGS	UNIT
Input Voltage	V _{IN}	30	V
Output Voltage	V _{out}	50	V
Collector Current – Continuous	Ic	500	mA
Base Current – Continuous	I _B	25	mA
DIP-18	- P _D	1.5	W
Power Dissipation SOP-18		0.95	V
Junction Temperature	T_J	+120	ô
Operating Ambient Temperature	T _{OPR}	0 ~ +70	ç
Storage Temperature	T _{STG}	-55 ~ +150	ô

Note Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied

■ THERMAL DATA

PARAMETER	SYMBOL	RATING	UNIT	
Thermal resistance from junction to Ambient	DIP-18	0	60	°C /W
	SOP-18	$\theta_{ m JA}$	80	°C /W

■ ELECTRICAL CHARACTERISTICS (Ta = 25°C, unless otherwise specified.)

PARAMETER		SYMBOL	TEST FIGURE	TEST CONDITIONS		MIN	TYP	MAX	UNIT
Collector-Emitter Saturation Voltage		V _{CE(SAT)}	1	I _{OUT} =350mA, I _{IN} =500μA			1.3	1.6	V
				I _{OUT} =200mA, I _{IN} =350μA			1.1	1.3	V
				I _{OUT} =100mA,I _{IN} =250μA			0.9	1.1	V
					I _{OUT} =125mA			5.0	V
land Vallana			2	V _{CE} =2.0V	I _{OUT} =200mA			6.0	V
Input Voltage	$V_{IN(ON)}$	I _{OUT} =275mA					7.0	V	
					I _{OUT} =350mA			8.0	V
Clamp Diode Forward Voltage		V_{F}	3	I _F =350mA			1.5	2.0	V
Output Leakage Current		, 4a		V _{OUT} =50V,Ta=70°C				100	
		I _{CEX}	4 b	V _{OUT} =50V,Ta=70°C,V _{IN} =1.0V		4		500	μΑ
Input Current	ON	١,	5	V _{IN} =5V		4	0.35	0.5	mΑ
	ON	I _{IN(ON)}		V _{IN} = 12V			1.0	1.45	mΑ
	OFF	I _{IN(OFF)}	6	I _{OUT} =500μA, Ta=70°C		50	100		μА
Clamp Diode Reverse Current		I _R	7	V _R =50V, Ta=25°C				50	μΑ
				V _R =50V, Ta=70°C				100	μА
DC Current Gain		h _{FE}		V _{OUT} =2V, I _{OUT} =350mA		1000			
Input Capacitance		C _{IN}					15	25	pF
urn-On Delay		t _{ON}	8				0.25	1	μS
Turn-Off Delay		t _{OFF}	8				0.25	1	μS

■ TEST FIGURES

Figure 1.

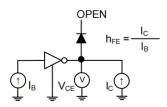


Figure 2.

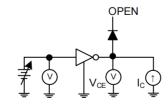


Figure 3.

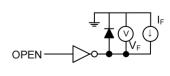


Figure 4a.

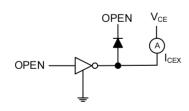


Figure 4b.

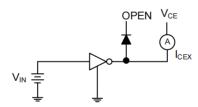


Figure 5.

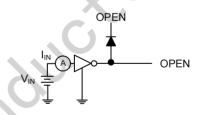


Figure 6.

Figure 7.

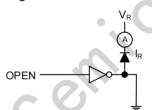
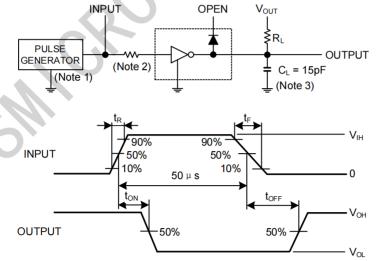
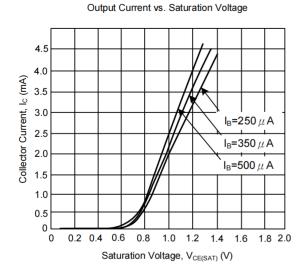
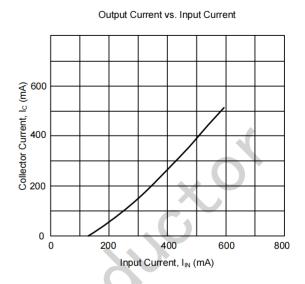
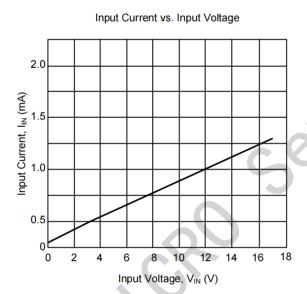



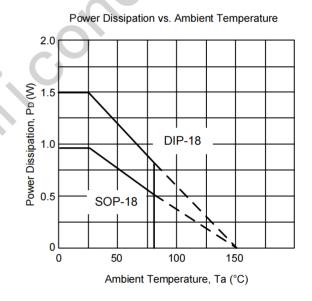
Figure 8.

Note1: Pulse width $50\mu s$, duty cycle 10%


Output impedance 50Ω , $t_R \le 5$ ns, $t_F \le 10$ ns


Note2: R1: 0, V_{IH}: 3V


Note3: C_L includes probe and jig capacitance.



TYPICAL CHARACTERISTICS

