

Inverting Octal 3-STATE Buffer • Octal 3-STATE Buffer

Description

The 74HC541 3-STATE buffers uti-lize advanced silicon-gate CMOS technology. They pos -sess high drive current outputs which enable high speed operation even when driving large bus capacitances. These circuits achieve speeds comparable to low power Schottky devices, while retaining the advantage of CMOS circuitry, i.e., high noise immunity, and low power consump-tion. Both devices have a fanout of 15 LS-TTL equivalent inputs. he 74HC541 is a non-inverting buffer. The 3-STATE con-trol gate operates as a two-input NOR such that if either G1 or G2 are HIGH, all eight outputs are in the high-imped-ance state.

Features

Typical propagation delay: 12 ns 3-STATE outputs for connection to system buses Wide power supply range: 2-6VLow quiescent current: 80 µA maximum (74HC Series) Output current: 6 mA

Diagrams

Absolute Maximum Ratings(Note 1)

(Note 2)

Supply Voltage (V _{CC})	-0.5 to +7.0V
DC Input Voltage (V _{IN})	-1.5 to V _{CC} +1.5V
DC Output Voltage (V _{OUT})	–0.5 to V _{CC} +0.5V
Clamp Diode Current (I _{CD})	±20 mA
DC Output Current, per pin (I _{OUT})	±35 mA
DC V _{CC} or GND Current,	
per pin (I _{CC})	±70 mA
Storage Temperature Range (T _{STG})	–65°C to +150°C
Power Dissipation (P _D)	
(Note 3)	600 mW
S.O. Package only	500 mW
Lead Temperature (TL)	
(Soldering 10 seconds)	260°C

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage (V _{CC})	2	6	V
DC Input or Output Voltage			
(V _{IN} , V _{OUT})	0	V _{CC}	V
Operating Temperature Range (T _A)	-40	+85	°C
Input Rise or Fall Times			
$(t_r, t_f) V_{CC} = 2.0V$		1000	ns
$V_{CC} = 4.5V$		500	ns
$V_{CC} = 6.0V$		400	ns

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: – 12 mW/°C from 65°C to 85°C.

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	Vcc	T _A = 25°C		$T_A = -40$ to $85^{\circ}C$	$T_A = -55 \text{ to } 125^{\circ}\text{C}$	Unite
Symbol	ratameter	Conditions	•00	Тур		Guaranteed Limits		Units
V _{IH}	Minimum HIGH Level		2.0V		1.5	1.5	1.5	V
	Input Voltage		4.5V		3.15	3.15	3.15	V
			6.0V		4.2	4.2	4.2	V
V _{IL}	Maximum LOW Level		2.0V		0.5	0.5	0.5	V
	Input Voltage		4.5V		1.35	1.35	1.35	V
			6.0V		1.8	1.8	1.8	V
V _{OH}	Minimum HIGH Level	$V_{IN} = V_{IH}$ or V_{IL}						
	Output Voltage	$ I_{OUT} \le 20 \ \mu A$	2.0V	2.0	1.9	1.9	1.9	V
			4.5V	4.5	4.4	4.4	4.4	V
			6.0V	6.0	5.9	5.9	5.9	V
		$V_{IN} = V_{IH}$ or V_{IL}						
		$ I_{OUT} \le 6.0 \text{ mA}$	4.5V	4.2	3.98	3.84	3.7	V
		$ I_{OUT} \le 7.8 \text{ mA}$	6.0V	5.7	5.48	5.34	5.2	V
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IH}$ or V_{IL}						
	Output Voltage	$ I_{OUT} \le 20 \ \mu A$	2.0V	0	0.1	0.1	0.1	V
			4.5V	0	0.1	0.1	0.1	V
			6.0V	0	0.1	0.1	0.1	V
		$V_{IN} = V_{IH}$ or V_{IL}						
		$ I_{OUT} \le 6.0 \text{ mA}$	4.5V	0.2	0.26	0.33	0.4	V
		$ I_{OUT} \le 7.8 \text{ mA}$	6.0V	0.2	0.26	0.33	0.4	V
I _{IN}	Maximum Input	V _{IN} = V _{CC} or GND	6.0V		±0.1	±1.0	±1.0	μA
	Current							
I _{OZ}	Maximum 3-STATE	$V_{IN} = V_{IH}$ or V_{IL} , $\overline{G} = V_{IH}$	6.0V		±0.5	±5	±10	μA
	Output Leakage	$V_{OUT} = V_{CC}$ or GND						
	Current							
I _{CC}	Maximum Quiescent	V _{IN} = V _{CC} or GND	6.0V		8.0	80	160	μA
	Supply Current	$I_{OUT} = 0 \ \mu A$						

Note 4: For a power supply of 5V \pm 10% the worst case output voltages (VOH, and VOL) occur for HC at 4.5V. Thus the 4.5V values should be used whendesigning with this supply. Worst case VIH and VIL occur at VCC = 5.5V and 4.5V respectively. (The VIH value at 5. 5V is 3.85V.) The worst case leakage cur-rent (IIN, ICC, and IOZ) occur for CMOS at the higher voltage and so the 6.0V values should be used.

AC Electrical Characteristics

Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
t _{PHL} , t _{PLH}	Maximum Propagation	C _L =45 pF	12	18	ns
	Delay (540)				
t _{PHL} , t _{PLH}	Maximum Propagation	C _L = 45 pF	14	20	ns
	Delay (541)				
t _{PZH} , t _{PZL}	Maximum Output Enable	$R_L = 1 k\Omega$	17	28	ns
	Time	$C_L = 45 \text{ pF}$			
t _{PHZ} , t _{PLZ}	Maximum Output Disable	$R_L = 1 k\Omega$	15	25	ns
	Time	$C_L = 5 \text{ pF}$			

AC Electrical Characteristics

	Parameter	Conditions	v _{cc}	T _A =	25°C	$T_{A} = -40$ to 85°C	T ₄ = -55 to 125°C	
Symbol				Typ		Guaranteed L	imits	Units
tour tour	Maximum Propagation	$C_{\rm r} = 50 \rm pE$	2.01/	55	100	126	149	ns
PHL, PLH	Delay (540)	$C_{\rm L} = 150 \rm pF$	2.01	83	150	120	224	ne
	Delay (540)	$C_{1} = 50 \text{ pc}$	2.00	12	20	190	224	113
		C_ = 150 pF	4.5V	22	20	20	30	113
		$C_L = 150 \text{pr}$	4.5V	11	30	30	40	
			0.00	10	17	21	25	ns
	Maximum David anti-	C _L = 150 pF	6.0V	18	26	32	38	ns
^T PHL, ^T PLH	Maximum Propagation	$C_L = 50 \text{ pF}$	2.00	58	115	145	1/1	ns
	Delay (541)	$C_L = 150 \text{ pF}$	2.0V	83	165	208	246	ns
		$C_L = 50 \text{ pF}$	4.5V	14	23	29	34	ns
		$C_{L} = 150 pF$	4.5V	17	33	42	49	ns
		$C_L = 50 \text{ pF}$	6.0V	11	20	25	29	ns
		$C_{L} = 150 \text{ pF}$	6.0V	14	28	35	42	ns
t _{PZH} , t _{PZL}	Maximum Output Enable	$R_L = 1 k\Omega$						
	Time	$C_L = 50 \text{ pF}$	2.0V	75	150	189	224	ns
		$C_{L} = 150 \text{ pF}$	2.0V	100	200	252	298	ns
		C _L = 50 pF	4.5V	15	30	38	45	ns
		C _L = 150 pF	4.5V	30	40	50	60	ns
		$C_L = 50 \text{ pF}$	6.0V	13	26	32	38	ns
		C _L = 150 pF	6.0V	17	34	43	51	ns
t _{PHZ} , t _{PLZ}	Maximum Output Disable	$R_L = 1 k\Omega$	2.0V	75	150	189	224	ns
	Time	$C_L = 50 \text{ pF}$	4.5V	15	30	38	45	ns
			6.0V	13	26	32	38	ns
t _{THL} , t _{TLH}	Maximum Output Rise	C _L = 50 pF	2.0V	25	60	75	90	ns
	and Fall Time		4.5V	7	12	15	18	ns
			6.0V	6	10	13	15	ns
C _{PD}	Power Dissipation	$\overline{G} = V_{IH}$		10				pF
	Capacitance (Note 5)	$\overline{G} = V_{IL}$		50				pF
CIN	Maximum Input			5	10	10	10	pF
	Capacitance							
COUT	Maximum Output Capacitance			15	20	20	20	pF

PIN DATA

DIP20

Dimensions In Millimeters(DIP20)											
Symbol:	A	В	D	D1	E	L	L1	а	С	d	
Min:	6.10	24.95	8.40	7.42	3.10	0.50	3.00	1.50	0.40	2.54 BSC	
Max:	6.68	26.55	9.00	7.82	3.55	0.70	3.60	1.55	0.50		

SOP20

Dimensions In Millimeters(SOP20L)									
Symbol:	Α	A1	В	С	C1	D	Q	а	b
Min:	2.10	0.05	12.50	10.21	7.40	0.45	0	0.35	1 07 DCC
Max:	2.50	0.25	13.00	10.61	7.60	1.25	8	0.45	1.27 BSC