

产品特点:

- 实时钟计秒、分、时、一个月中的日期、月、 一周中的每天、到 2100 年的闰年;
- 31X8 RAM;
- 串行 IO 以节省引脚数目;
- 1.3~5.5V 全工作电压范围(1.3~5.5V 电压可选,可完全单电池供电);
- 2.5V 下消耗小于 300nA 电流;
- 时钟或者 RAM 数据可以单字节或者多字节传输;
- SOIC8、SOP8 或者 DIP8 封装;
- 简单的 3 线界面;
- TTL 兼容;
- 可选工业级温度范围: -40~85 度。

引脚分配和说明:

管脚定义

外引脚序 号	引脚名称	功能	I/O
1	VCC2	电源电压	Р
2	X1	32.768kHZ 晶振输入	I
3	X2	32.768kHZ 晶振输出	0
4	GND	地	Р
5	RST	复位	I
6	I/O	数据传输口	I/O
7	SCLK	数据传输时钟	I
8	VCC1	电源电压	Р

订货信息

PART	TEMP RANGE	PIN-PACKAGE	TOP MARK
KY1302	0°C to +70°C	8 PDIP (300 mils)	KY1302
KY1302N	-40°C to +85°C	8 PDIP (300 mils)	KY1302
KY1302S	0°C to +70°C	8 SO (208 mils)	KY1302S
KY1302SN	-40°C to +85°C	8 SO (208 mils)	KY1302S
KY1302Z	0°C to +70°C	8 SO (150 mils)	KY1302Z
KY1302ZN	-40°C to +85°C	8 SO (150 mils)	KY1302ZN

芯片参数:

1、极限参数:

■ 每一个管脚到地电压: -0.5V~7.0V;

■ 工作温度: 0~70度; ■ 存储温度: -55~125度;

2、推荐直流工作条件: (0~70 度)

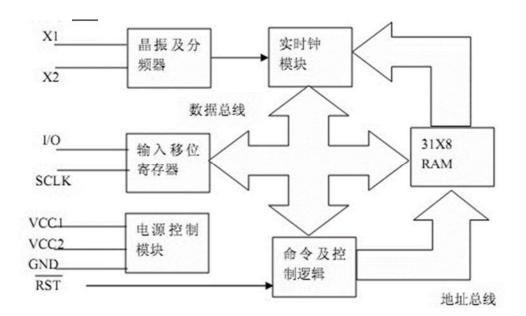
参数	条件	最小	典型	最大	单位
VCC1, VCC2		1.3		5.5	V
逻辑 1 输入 VIH		2.0		VCC+0.3	V
严担 0 ! 	VCC=1.3V	-0.2		+0.3	V
逻辑 0 输入 VIL	VCC=5V	-0.3		+0.8	V

3、 直流电参数: (0~70 度) (VCC=2~5.5V)

参数	符号	条件	最小	典型	最大	单位	Notes
输入漏电流	ILI			105	500	uA	6
I/O 漏电路	ILO			105	500	uA	6
迎提 1 <i>校</i> 山	\(\rightarrow\)	VCC=2V	1.2	4.7		V	2
逻辑 1 输出	VOH	VCC=5V	2.4	4.7		V	2
温特 0 松山	VOL	VCC=2V		0.4	0.4	V	3
逻辑 0 输出	VOL	VCC=5V		0.4	0.4	V	
工作电流	ICC1A	VCC=2V		0.06	0.3	mA	F 10
工作电流	ICCTA	VCC=5V		0.763	1.2	mA	5,12
时钟保持电流	ICC1T	VCC=2V		0.119	0.3	uA	4,12
的批判		VCC=5V		0.659	1	uA	
待机电流	ICC1S	VCC=2V		4	100	nA	10 12 14
1470年70	ICC13	VCC=5V		18	100	nA	10,12,14
工作电流	ICC2A	VCC=2V		0.092	0.4	mA	E 12
工厂电池	ICCZA	VCC=5V		0.946	1.28	mA	5,13
时钟保持电流	ICC2T	VCC=2V		7.5	25	uA	112
HJTTTTオリカトロルル	ICCZI	VCC=5V		23.8	81	uA	4,13
待机电流	ICC2S	VCC=2V		7.4	25	uA	10.12
141104410	ICC2S	VCC=5V		23.3	80	uA	10,13

涓流充电电 阻	R1		2	kΩ	
	R2		4	kΩ	
	R3		8	kΩ	
涓流充电二 极管压降	V_{TD}		0.7	V	

4、交流参数: (0~70 度)


参数	符号	条件	最小	典型	最大	单位
时钟频率	fCLK	VCC=1.3V			0.5	- MHZ
		VCC=5V			2	

功能框图和简单功能描述:

KY1302 包含了一个时钟/日历实时钟以及 32 字节的静态 RAM,它通过一个简单的串行界面和微控制器通讯;时钟/日历实时钟提供了秒、分、时、天、月以及年的信息;每个月的最后一天根据该月是否有31 天而自动调节,包括闰年的校正;时钟可以是 12 小时或者 24 小时制,并加以 AM 或者 PM 提示;

KY1302 与微控制器之间的界面是一个简单的同步串行通讯接口,只有 CLK、RST 、和 I/O 三根线; KY1302 采用低功耗设计。

功能框图:

电路包括移位寄存器、控制逻辑模块、晶振、实时钟模块以及 RAM 等几个功能模块;在开始传递数据前,RST 变为高,8 bits 数据进入移位寄存器,可以是地址或者命令信息;数据在SCLK 上升沿串行输入;第一个8 位数据用来制定哪 40 个字节数据将被操作,不管是读操作或者是写操作;也不管是单字节操作还是多字节操作。命令字节的输入是最低位Bti0 (LSB) 先输入。

主要模块工作原理:

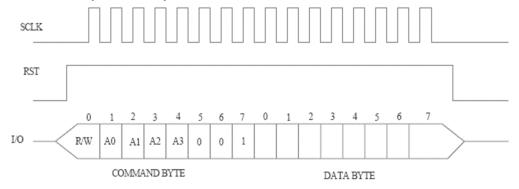
1、命令字节格式:

7	6	5	4	3	2	1	0
1	RAM CK	A4	А3	A2	A1	A0	$RD \overline{W}$

每次数据传递都通过命令字节来进行初始化;最高位必须是"1",如果是"0"的话写进 KY1302将无效;bit6=0表示时钟/日历数据,=1表示 RAM 数据;bit1~bit5指定目标寄存器地址;bit0=0表示写操作,=1表示读操作。

2、 复位和时钟控制、数据输入/输出以及多字节模式:

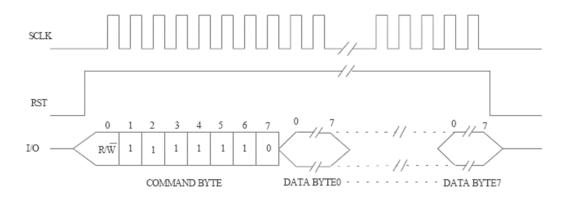
RST 引脚是电路的复位引脚,低电平有效。所有数据传输都必须设置 RST 为高; 一旦 RST 是低那么_____ 数据立即停止传输。在上电复位过程中, RST 必须保持低电平, 直到 Vcc≥1.3V, 同时 SCLK 也必须是低电平。____ RST 有两个功能: 第一: 启动控制逻辑; 第二: 提供一种方法来决定是单字节还是多字节传输;


数据输入

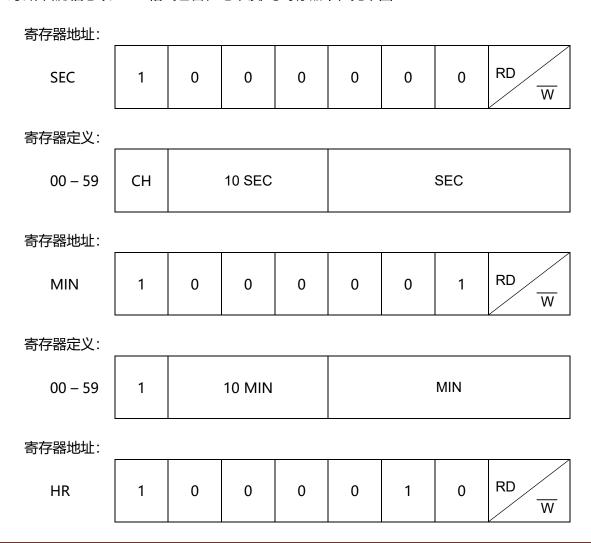
在前面 8 个SCLK 时钟输入写命令字节后,在下一个 8 个 SCLK 上升沿输入数据。 数据输入先从 bit0 开始。

数据输出

在前面 8 个 SCLK 时钟输入读命令字节后,数据在 SCLK 时钟的下降沿输出。数据输出从 bit0开始。


数据传输时序图(单字节传输):

注: 上图 I/O 中bit5 应为 A4, bit6 应为 R/C; 数据传输时序图 (多字节传输):


数据传输时序图 (多字节传输):

注: 上图 I/O 中 bit6 应为R/C; bit7 应为 1;

3、 时钟/日历、时钟停止标志、AM/PM 12-24 小时模式以及写保护位:

时钟/日历信息以 BCD 格式包含在七个读/写寄存器中,见下图:

00 - 99

寄存器定义:								
01 – 12 00 - 23	12/24	0	10 A/P	HR			HR	
寄存器地址:	-						ı	
DATE	1	0	0	0	0	1	1	RD \overline{W}
寄存器定义:								
01-28/29 01 - 30 01 - 31	0	0	10 🗅	OATE			DATE	
寄存器地址:								
MONTH	1	0	0	0	1	0	0	$RD \overline{W}$
寄存器定义:								
01 - 12	0	0	0	10 M	HTMC	N	ИОИТН	
寄存器地址:								
DAY	1	0	0	0	1	0	1	$RD \overline{W}$
寄存器定义:								
01 - 07	0	0	0	0	0		DA	Y
寄存器地址:								
YEAR	1	0	0	0	1	1	0	RD \overline{W}
寄存器定义:			•					
	1				1			

YEAR

10 YEAR

时钟停止标志:

秒寄存器的 bit7 用来定义时钟停止标志,当这一位设置成 1 时,时钟晶振定制,KY1302 进入低功耗待机模式;当这一位设置成 0 时,时钟将启动。

AM/PM 12-24 模式:

小时寄存器的 bit7 用来定义 12 或者 24 小时制; 当这一位设置成 1 时,选择 12 小时制;在 12 小时制中,bit5 用来设置 AM 或者 PM (当为 1 时,选择 PM);在 24 小时制中,bit5 是第二个 10小时位(20~23 小时)。

写保护位:

寄存器地址:

1	0	0	0	1	1	1	$RD \overline{W}$
---	---	---	---	---	---	---	-------------------

寄存器定义:

WP	0	0	0	0	0	0	0

控制寄存器的 bit7 是写保护位, ,其它 7 位强制为 0; 在时钟或者 RAM 写操作前, bit7 必须设置为 0, 一旦设置为 1, 任意寄存器的写操作将被禁止。

4、 点滴式充电寄存器:

充电寄存器地址:

1	0	0	1	0	0	0	$RD \overline{W}$
---	---	---	---	---	---	---	-------------------

充电寄存器定义:

TCS	TCS	TCS	TCS	DS	DS	RS	RS	
-----	-----	-----	-----	----	----	----	----	--

该寄存器控制 KY1302 的充电特性,由 bit4~bit7 (TCS) 这四位控制,只有 1010 这种模式才可以使能充电器;

bit2~bit3 (DS) 用来选择 VCC1 和 VCC2 之间连接一个或者 2 个二极管 (01 表示连接一个二极管、

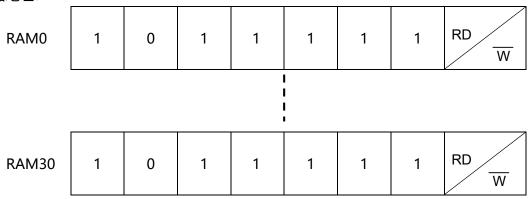


10 表示连接两个二极管, 当为00 或者11 时, 充电器不使能);

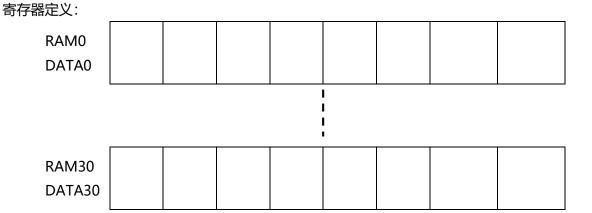
bit1~bit0 (RS) 用来选择VCC1和VCC2之间连接的电阻值:00表示没有电阻,且充电器不使能;

01 表示2K 电阻; 10 表示4K 电阻; 11 表示8K 电阻;

简化的逻辑关系图如下:

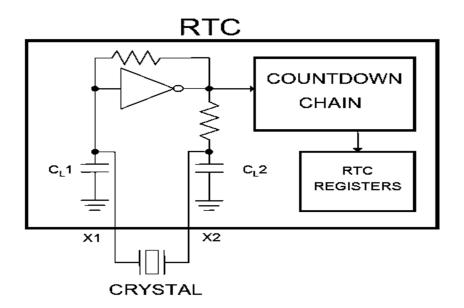

5、时钟/日历多字节模式:

CLOCK BURST 寄存器地址:


1	0	1	1	1	1	1	$RD \overline{W}$
---	---	---	---	---	---	---	-------------------

6、RAM及RAM多字节模式:

寄存器地址:

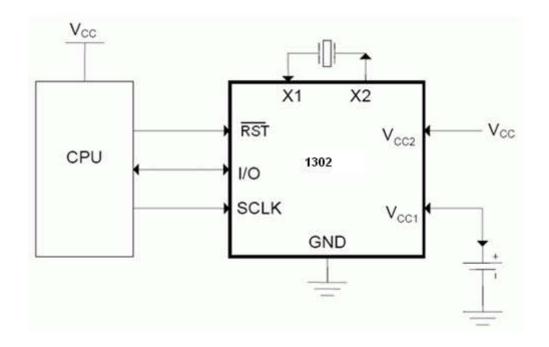

RAM BUTST 寄存器地址:

1	1	1	1	1	1	1	$RD \overline{W}$
---	---	---	---	---	---	---	-------------------

7、晶振选择:

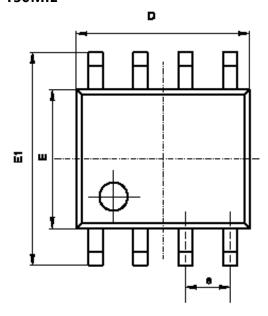
32.768kHZ 晶振直接连到 KY1302 上,但注意要选择负载为 6pF 的晶振。同时晶振应尽量靠近输入脚, 布线避开可能的干扰。

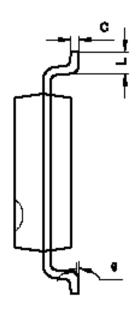
简化图

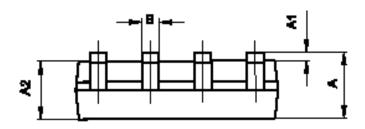

8、 电源控制:

- VCC1 用来提供低功耗模式下的电源;
- VCC2 用来提供双供电模式下的电源 (VCC1 也连接作为备用电源);
- VCC1 和VCC2 中大者给 KY1302 提供电源:当 VCC2 大于 VCC1 + 0.2V 时,VCC2 给 KY1302 供电;当

■ VCC2 小于 VCC1 时, VCC1 给 KY1302 供电。


典型应用图





外形尺寸图

SOIC8 150MIL

E	Dimensions in Millimeters			
Symbol	Min	Masc		
A	1.350	1.750		
A1	0.100	0.260		
A2	1.350	1.550		
D	0.330	0.510		
¢	0.190	0.250		
D	4.780	6.000		
E	2.800	4.000		
E1	5.800	6.300		
•	1.270(TYP)			
L	0.400	1.270		
9	04	8,		

- 本资料内容,随产品的改进,可能会有未经预告之更改。
- 本资料所记载设计图等因第三者的工业所有权而引发之诸问题,本公司不承担其责任。另外,应用电路示例为产品之代表性应用说明,非保证批量生产之设计。
- 本资料内容未经本公司许可,严禁以其他目的加以转载或复制等。
- 本资料所记载之产品,未经本公司书面许可,不得作为健康器械、医疗器械、防灾器械、瓦斯关联器械、车辆器械、航空器械及车载器械等对人体产生影响的器械或装置部件使用。
- 尽管本公司一向致力于提高质量与可靠性,但是半导体产品有可能按照某种概率发生故障或错误工作。为防止因故障或错误动作而产生人身事故、火灾事故、社会性损害等,请充分留心冗余设计、火势蔓延对策设计、防止错误动作设计等安全设计。