- Size 3.2*1.6 mm/0.12*0.06 inch
- Surface Mount packaging for automated assembly

Applications

Almost anywhere there is a low voltage power supply, up to 60V and a load to be

- Computer mother board, Modem, USB hub
- PDAs & Charger, Analog & digital line card
- Digital cameras, Disk drivers, CD-ROMs,

BpS06A01.00-16

Performance Specification

	Marking	V _{max} I _r	l _{max}	I _{max} I _{hold} @25°C	I _{trip} @25°C	P_d	Maximum Time To Trip		Resistance		Agency Approval	
Model						Max.	Current	Time	R_{min}	R1max	UL	TUV
		(Vdc)	(A)	(A)	(A)	(W)	(A)	(Sec)	(Ω)	(Ω)	OL.	100
BpS06A01.00-16		16.0	100	1.00	1.80	0.6	8.00	0.30	0.055	0.270		

Ihold = Hold Current. Maximum current device will not trip in 25°C still air.

Itrip = Trip Current. Minimum current at which the device will always trip in 25°C still air.

V_{max} = Maximum operating voltage device can withstand without damage at rated current (Imax).

Imax = Maximum fault current device can withstand without damage at rated voltage (Vmax).

Pd = Power dissipation when device is in the tripped state in 25°C still air environment at rated voltage.

Rimin/max = Minimum/Maximum device resistance prior to tripping at 25°C.

R1_{max} = Maximum device resistance is measured one hour post reflow.

CAUTION: Operation beyond the specified ratings may result in damage and possible arcing and flame.

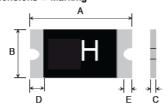
Environmental Specifications

Test	Conditions	Resistance change					
Passive aging	+85°C, 1000 hrs.	±5% typical					
Humidity aging	+85°C, 85% R.H., 168 hours	±5% typical					
Thermal shock	+85°C to -40°C, 20 times	±33% typical					
Resistance to solvent	MIL-STD-202,Method 215	No change					
Vibration	MIL-STD-202,Method 201	No change					
Ambient operating conditions :	- 40 °C to 85 °C						
Maximum surface temperature of the device in the tripped state is 125 °C							

UL pending Agency Approvals:

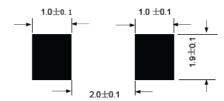
Regulation/Standard: 2002/95/EC

EN14582


Ihold Versus Temperature

Mode	J		Maximum ambient operating temperature (T _{mao}) vs. hold current (I _{hold})								
Model	-40°C	-20°C	0°C	25°C	40°C	50°C	60°C	70°C	85°C		
BpS06A01.	00-16	1.45	1.31	1.15	1.00	0.84	0.77	0.69	0.61	0.48	

BpS06A01.00-16


Construction And Dimension (Unit:mm) D Model Min. Min. Min. Min BpS06A01.00-16 3.50 1.50 1.80 0.50 1.20 0.15

Dimensions & Marking

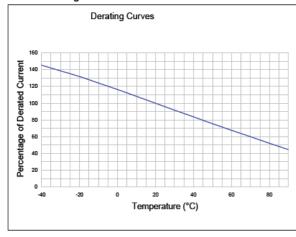
H = Part identification

Recommended Pad Layout (mm)

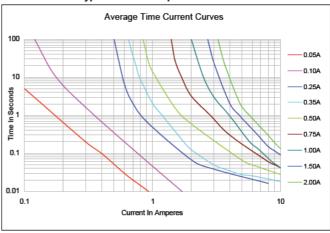
Termination Pad Characteristics

Terminal pad materials:

Tin-plated Nickel-Copper


Terminal pad solderability:

Meets EIA specification RS186-9E and ANSI/J-STD-002 Category 3.

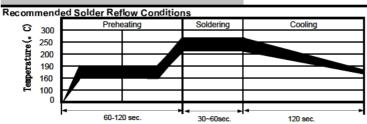

Rework

Use standard industry practices, the removal device must be replaced with a fresh one.

Thermal Derating Curve

Typical Time-To-Trip At 25°C

- Use PPTC beyond the maximum ratings or improper use may result in device damage and possible electrical arcing and flame.
- PPTC are intended for protection against occasional over current or over temperature fault conditions and should not be used when repeated fault conditions or prolonged trip events are anticipated.

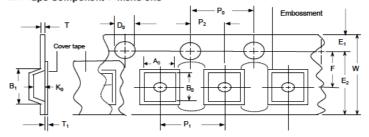

 Device performance can be impacted negatively if devices are handled in a manner inconsistent with recommended electronic, thermal, and mechanical procedures for electronic components.

- Device performance can be impacted negatively it occrete and annual in annual in a limited in the performance can be impacted negatively in occrete and annual in a limited in the performance of the PPTC.

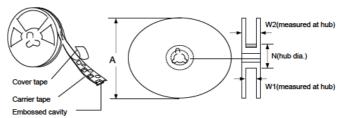
 Avoid impact PPTC device its thermal expansion like placed under pressure or installed in limited space.

 Contamination of the PPTC material with certain silicon based oils or some aggressive solvents can adversely impact the performance of the devices. PPTC SMD can be cleaned by standard methods.
- Requests that customers comply with our recommended solder pad layouts and recommended reflow profile. Improper board layouts or reflow profile could negatively impact solderability performance of our devices.

BpS06A01.00-16



- Recommended reflow methods : IR, vapor phase oven, hotair oven. Devices are not designed to be wave soldered to the bottom side of the board.
- Recommended maximum paste thickness is Q25mm (Q010 inch).
- Devices can be cleaned using standard method and solvents.
- Note: If reflow temperatures exceed the recommended profile, devices may not meet the performance requirements.


Tape And Reel Specifications (mm)

Governing Specifications	EIA 481-1
W	8.15 ± 0.3
P0	4.0 ± 0.10
P1	4.0 ± 0.10
P2	2.0 ± 0.05
A0	1.95 ± 0.10
B0	3.45 ± 0.10
B1max.	4.35
D0	1.5 + 0.1, -0
F	3.5 ± 0.05
E1	1.75 ± 0.10
E2min.	6.25
Tmax.	0.6
T1max.	0.1
К0	1.04 ± 0.1
Leader min.	390
Trailer min.	160
Reel Dimensions	
A max.	178
N min.	60
W1	9 ± 0.5
W2	12.6 ± 0.5

EIA Tape Component Dimensions

EIA Reel Dimensions

Storage And Handling

- Storage conditions : 40°C max, 70% R.H.
- Devices may not meet specified performance if storage conditions are exceeded.