Preliminary Specification # **PRODUCT NUMBER:** | CUSTOMER | | | | | |----------|-------------|--|--|--| APPROVED BY | DATE: | | | | | - 1 - REV.: X01 2016/09/30 # **REVISION RECORD** | REV. | REVISION DESCRIPTION | REV. DATE | REMARK | |------|----------------------|--------------|--------| | X01 | INITIAL RELEASE | 2016. 09. 30 | | - 2 - REV.: X01 2016/09/30 # **CONTENTS** | ITEM | PAGE | |--|-------------| | 1. SCOPE | 4 | | 2. WARRANTY | 4 | | 3. FEATURES | 4 | | 4. MECHANICAL DATA | 5 | | 5. MAXIMUM RATINGS | 6 | | 6. ELECTRICAL CHARACTERISTICS | 6 | | 6.1 D.C ELECTRICAL CHARACTERISTICS | | | 6.2 ELECTRO-OPTICAL CHARACTERISTICS | | | 7. LIFETIME SPECIFICATION | 8 | | 8. INTERFACE | 9 | | 8.1 FUNCTION BLOCK DIAGRAM | | | 8.2 PANEL LAYOUT DIAGRAM | | | 8.3 PIN ASSIGNMENTS | | | 8.4 GRAPHIC DISPLAY DATA RAM (GDDRAM) | | | 8.5 INTERFACE TIMING CHART | | | 9. POWER ON / OFF SEQUENCE & APPLICATION CIRCUIT | 13 | | 9.1 POWER ON AND OFF SEQUENCE WITH CHARGE PUMP | | | APPLICATION | | | 9.2 APPLICATION CIRCUIT | | | 9.3 COMMAND TABLE | | | 10. RELIABILITY TEST CONDITIONS | 15 | | 11. EXTERNAL DIMENSION | 16 | | 12. PACKING SPECIFICATION | 17 | | 13. APPENDIXES | 18 | - 3 - REV.: X01 2016/09/30 # 1. SCOPE ### 2. WARRANTY ## 3. FEATURES - Small molecular organic light emitting diode. - Color: White - Panel matrix : 128x32Driver IC : SSD1316Z - Excellent quick response time. - Extremely thin thickness for best mechanism design: 1.22mm - High contrast: 2000:1 - Wide viewing angle: 160° - 4 wire Serial Peripheral Interface - Wide range of operating temperature : -40 to 70 ℃ - Anti-glare polarizer. - 4 - REV.: X01 2016/09/30 # 4. MECHANICAL DATA | NO | ITEM | SPECIFICATION | UNIT | |----|-------------------|-----------------------------|-----------------| | 1 | Dot Matrix | 128 (W) x 32 (H) | dot | | 2 | Dot Size | 0.147 (W) x 0.147 (H) | mm ² | | 3 | Dot Pitch | 0.167 (W) x 0.167 (H) | mm ² | | 4 | Aperture Rate | 77 | % | | 5 | Active Area | 21.356 (W) x 5.324 (H) | mm ² | | 6 | Panel Size | 29 (W) x 8.7 (H) | mm ² | | 7* | Panel Thickness | 1.02 ± 0.1 | mm | | 8 | Module Size | 39 (W) x 8.7 (H) x 1.22 (D) | mm ³ | | 9 | Diagonal A/A size | 0.87 | inch | | 10 | Module Weight | TBD | gram | ^{*} Panel thickness includes substrate glass, cover glass and UV glue thickness. - 5 - REV.: X01 2016/09/30 # **5. MAXIMUM RATINGS** | ITEM | MIN | MAX | UNIT | Condition | Remark | |------------------------------------|------|-----|------|-----------|-------------------| | Supply Voltage (V _{DD}) | -0.3 | 4 | V | Ta = 25℃ | IC maximum rating | | Supply Voltage (V _{BAT}) | -0.3 | 5 | V | Ta = 25℃ | IC maximum rating | | Supply Voltage (Vcc) | 8 | 16 | V | Ta = 25℃ | IC maximum rating | | Operating Temp. | -40 | 70 | ∞ | - | - | | Storage Temp | -40 | 85 | ∞ | - | Note (2) | ### Note: - (1) Maximum ratings are those values beyond which damages to the OLED module may occur. The OLED functional operation should be restricted to the limits in the section 6. Electrical Characteristics tables. - (2) The defined temperature ranges do not include the polarizer. The maximum withstood temperature of the polarizer should be 80 ℃. ## **6. ELECTRICAL CHARACTERISTICS** ### **6.1 D.C ELECTRICAL CHARACTERISTICS** | SYMBOL | PARAMETER | TEST
CONDITION | MIN | TYP | MAX | UNIT | |-----------------|--|---------------------------|----------------------|-----|---------------------|------| | V_{DD} | Logic Supply Voltage | Ta = 25℃ | 1.65 | - | 3.3 | V | | V_{BAT} | Charge Pump Regulator Supply Voltage | Ta = 25℃ | 3.5 | - | 4.2 | V | | V _{CC} | Operating Voltage
(for OLED panel)
(Charge Pump) | Ta = 25°C | 8.5 | 9 | - | V | | V _{OH} | High Logic Output Level | $I_{OUT} = 100uA,$ 3.3MHz | 0.9* V _{DD} | - | - | ٧ | | V _{OL} | Low Logic Output Level | $I_{OUT} = 100uA,$ 3.3MHz | - | - | 0.1*V _{DD} | ٧ | | V _{IH} | High Logic Input Level | - | 0.8* V _{DD} | - | _ | V | | V_{IL} | Low Logic Input Level | - | - | = | $0.2*V_{DD}$ | V | - 6 - REV.: X01 2016/09/30 # 6.2 ELECTRO-OPTICAL CHARACTERISTICS PANEL ELECTRICAL SPECIFICATIONS | PARAMETER | MIN | TYP. | MAX | UNITS | COMMENTS | |--|--------|------|------|-------------------|-----------------------------------| | Normal mode current (IBAT) (Charge Pump) | - | 26 | 30 | mA | All pixels on (1) | | Normal mode current (IBAT) (Charge Pump) | - | 7 | 9 | mA | 20% pixels on (1) | | Standby mode
current(IBAT)
(Charge Pump) | - | 1 | 2 | mA | Standby mode
10% pixels on (2) | | IDD sleep mode current | - | - | 10 | uA | Sleep mode
Current (3) | | IBAT sleep mode current (Charge Pump) | - | - | 10 | uA | Sleep mode
Current (3) | | Normal Luminance
(Charge Pump) | 200 | 250 | - | cd/m ² | Display Average | | Standby Luminance (Charge Pump) | - | 20 | - | cd/m ² | Display Average | | CIEx (White) | 0.25 | 0.29 | 0.33 | | x, y (CIE 1931) | | CIEy (White) | 0.27 | 0.31 | 0.35 | | ∧, y (OIE 1931) | | Dark Room Contrast | 2000:1 | | | | | | Viewing Angle | 160 | | | degree | | | Response Time | | 10 | | μs | | (1) Normal mode condition: (Charge Pump) - $V_{BAT} = 3.5V$ - Contrast setting: 0x58 Frame rate: 105HzDuty setting: 1/32 (2) Standby mode condition : (Charge Pump) - $V_{BAT} = 3.5V$ - Contrast setting: 0x01 - Frame rate : 105Hz - Duty setting: 1/32 (3) Sleep mode condition: When send 0xae command OLED display off and memory data will be maintained. (4) Wake up condition: When send 0xaf command OLED will be turned on. - 7 - REV.: X01 2016/09/30 # 7. LIFETIME SPECIFICATION | ITEM | MIN UNIT | | Condition | Remark | | |-----------|----------|-----|----------------------------|----------|--| | Life Time | 12,000 | Hrs | 250cd/m², 50% checkerboard | Note (1) | | ### Note: (A) Under $V_{BAT} = 3.5V$ (Charge Pump), $Ta = 25 \,^{\circ}\text{C}$, 50% RH. (B) Life time is defined the amount of time when the luminance has decayed to less than 50% of the initial measured luminance. (1) Setting of 250 cd/m^2 : Contrast setting: 0x58Frame rate: 105HzDuty setting: 1/32 - 8 - REV.: X01 2016/09/30 # **8. INTERFACE** #### **8.1 FUNCTION BLOCK DIAGRAM** ### **8.2 PANEL LAYOUT DIAGRAM** - 9 - REV.: X01 2016/09/30 ## **8.3 PIN ASSIGNMENTS** | Pin No. | Pin Name | Description | |------------|----------|---| | 1 | C2N | C2N/C2P – Pin for charge pump capacitor; Connect to each | | 2 | C2P | other with a capacitor. | | 3 | C1P | C1P/C1N – Pin for charge pump capacitor; Connect to each | | 4 | C1N | other with a capacitor. | | 5 | VBAT | Power supply for charge pump regulator circuit. | | 6 | VSS | Ground pin. | | 7 | VDD | Power supply pin for core logic operation. | | 8 | CS# | This pin is the chip select input connecting to the MCU. | | 9 | RES# | This pin is reset signal input. | | 10 | D/C# | This pin is Data/Command control pin connecting to the MCU. | | 11 | SCLK | When serial interface mode is selected, D0 will be the serial | | 12 | SDIN | clock input: SCLK; D1 will be the serial data input: SDIN. | | 13 | IREF | This pin is the segment output current reference pin. A | | 13 | IIILI | resistor should be connected between this pin and VSS. | | 14 | VCOMH | COM signal deselected voltage level. A capacitor should be | | 14 VOOIVII | | connected between this pin and VSS. | | 15 | VCC | Power supply for panel driving voltage. | - 10 - REV.: X01 2016/09/30 ### 8.4 GRAPHIC DISPLAY DATA RAM (GDDRAM) The GDDRAM is a bit mapped static RAM holding the bit pattern to be displayed. The size of the RAM is 128 x 39 bits and the RAM is divided into five pages, from PAGE0 to PAGE4, which are used for monochrome 128 x 39 dot matrix display, as shown in below figures. When one data byte is written into GDDRAM, all the rows image data of the same page of the current column are filled (i.e. the whole column (8 bits) pointed by the column address pointer is filled.). Data bit D0 is written into the top row, while data bit D7 is written into bottom row. For PAGE4, bit D7 is treated as don't care bit. For mechanical flexibility, re-mapping on both Segment and Common outputs can be selected by software. For vertical shifting of the display, an internal register storing the display start line can be set to control the portion of the RAM data to be mapped to the display (command D3h). | | | | | | G | DDRAM pages struct | ure | of | SSE | 131 | 16 | | | |---------|-----------------------------------|--------|------------|----------|----------|--------------------|-------------------------------------|--------------|----------|-------------|--------|--|---| | mapping | ment re-
g (command
A1h) | SEG127 | SEG126 | SEG125 | SEG124 | | SEG4 | SEG3 | SEG2 | SEG1 | SEGO | | | | mapping | ment re-
g (command
RESET]) | œas | SEG1 | SEG2 | SECS | | SEG123 | SEG124 | SEG125 | SEG126 | SEG127 | | | | Page | Data | COLD | 3QL1 | 2012 | cons | | CQL123 | COL 124 | COL125 | COL126 | CQL127 | COM Output Scan
Direction
(command C0h
[RESET]) | COM Output
Scan Direction
(command C8h) | | Ť | D0 | | _ | _ | | | _ | | | Ŭ | | COM0 | COM38 | | | D1 | | | | | | ${}^{-}$ | | | | | COM1 | COM37 | | | D2 | | | | | | | | | | | COM2 | COM36 | | 0 | D3 | | | | | | | | | | | COM3 | COM35 | | 0 | D4 | | | | | | | | | | | COM4 | COM34 | | | D5 | | | | | | $ldsymbol{ldsymbol{ldsymbol{eta}}}$ | | | | | COM5 | COM33 | | | D6 | | \vdash | | | | Ь | | | Ш | | COM6 | COM32 | | | D7 | | lacksquare | | | | _ | | | \Box | | COM7 | COM31 | | | D0 | | | | | | ㄴ | | | | | COM8 | COM30 | | | D1 | | | | | <u> </u> | | | | \Box | | COM9 | COM29 | | | D2 | | | | | | ╙ | | | - | | COM10 | COM28 | | 1 | D3 | | | | | | ⊢ | | | Ш | | COM11 | COM27 | | | D4 | | | | | | ╙ | | | | | COM12 | COM26 | | | D5 | | | | | | ⊢ | | \vdash | \vdash | | COM13 | COM25 | | | D6
D7 | | | | * | | ⊢ | | \vdash | - | | COM14
COM15 | COM24
COM23 | | ⊢— | D0 | _ | \vdash | \vdash | \vdash | | ⊢ | | \vdash | \vdash | | COM16 | COM23 | | | D1 | _ | \vdash | | | Fach hay range | | t = = | | | | COM16
COM17 | COM21 | | | D2 | | \vdash | \vdash | - | Each box repre | sen | เรเ | ne i | Ή | | COM17 | COM20 | | | D3 | | - | | | of image data | | | | H | | COM19 | COM19 | | 2 | D4 | | | - | - | | ⊢ | | | Н | | COM20 | COM18 | | | D5 | | - | | | | ⊢ | | | - | | COM21 | COM17 | | | D6 | | | | - | | ⊢ | | \vdash | - | | COM22 | COM16 | | | D7 | | | | | | ⊢ | | | - | | COM23 | COM15 | | | D0 | | | | | | \vdash | | \vdash | \vdash | | COM24 | COM14 | | | D1 | | | | | | \vdash | | | \vdash | | COM25 | COM13 | | | D2 | | | | | | \vdash | | | \vdash | | COM26 | COM12 | | | D3 | | | | | | \vdash | | | \vdash | | COM27 | COM11 | | 3 | D4 | | | | | | \vdash | | | \vdash | | COM28 | COM10 | | | D5 | | | | | | \vdash | | | \vdash | | COM29 | COM9 | | | D6 | | | | | | Т | | | | | COM30 | COM8 | | | D7 | | | | | | \vdash | | | \Box | | COM31 | COM/ | | | D0 | | | | | | | | | | | COM32 | COM6 | | | D1 | | | | | | | | | | | COM33 | COM5 | | | D2 | | | | | | | | | | | COM34 | COM4 | | 4 | D3 | | | | | | | | | | | COM35 | COM3 | | | D4 | | | | | | | | | | | COM36 | COM2 | | | D5 | | | | | | | | | | | COM37 | COM1 | | | D6 | | | | | | | | | | | COM38 | COM0 | | | D7 | | | | | Don't care bit | | | | 10 10 10 10 | 1000 | | | - 11 - REV.: X01 2016/09/30 ### **8.5 INTERFACE TIMING CHART** ### Serial Interface Timing Characteristics (4-wire SPI) $(V_{DD}$ - V_{SS} = 1.65V~3.3V, T_A = 25°C) | Symbol | Parameter | Min | Тур | Max | Unit | |--------------------|------------------------|-----|-----|-----|------| | t _{cycle} | Clock Cycle Time | 100 | - | - | ns | | t _{AS} | Address Setup Time | 15 | - | - | ns | | t _{AH} | Address Hold Time | 15 | - | - | ns | | t _{CSS} | Chip Select Setup Time | 20 | - | - | ns | | t _{CSH} | Chip Select Hold Time | 60 | - | - | ns | | t_{DSW} | Write Data Setup Time | 15 | - | - | ns | | t_{DHW} | Write Data Hold Time | 15 | - | - | ns | | t _{CLKL} | Clock Low Time | 40 | - | - | ns | | t _{CLKH} | Clock High Time | 60 | - | - | ns | | t_R | Rise Time | - | - | 40 | ns | | t _F | Fall Time | - | - | 40 | ns | - 12 - REV.: X01 2016/09/30 ### 9. POWER ON / OFF SEQUENCE & APPLICATION CIRCUIT ### 9.1 Power ON and OFF sequence with Charge Pump Application ### Power ON sequence: - 1. Power ON V_{DD} - 2. Wait for t_{ON}. Power ON V_{BAT}. (1), (2) (where Minimum t_{ON}=0ms) - 3. After V_{BAT} become stable, set RES# pin LOW (logic low) for at least 3us $(t_1)^{(3)}$ and then HIGH (logic high). - 4. After set RES# pin LOW (logic low), wait for at least 3us (t₂). Then input commands with below sequence: - a. 8Dh 14h for enabling charge pump - b. AFh for display ON - 5. SEG/COM will be ON after 100ms (t_{AF}). The Power ON sequence with Charge Pump Application #### Power OFF sequence: - 1. Send command AEh for display OFF - 2. Send command 8Dh 10h to disable charge pump - 3. Power OFF V_{BAT} after t_{OFF}. (1), (2) (Typical t_{OFF}=500ms) - 4. Power OFF V_{DD} after t_{OFF2}. (where Minimum t_{OFF2}=0ms ⁽⁴⁾, Typical t_{OFF2}=5ms) #### Note: - (1) V_{BAT} should be disabled when it is OFF. - (2) Power Pins (V_{DD}, V_{BAT}) can never be pulled to ground under any circumstance. - (3) The register values are reset after t₁. - (4) V_{DD} should not be Power OFF before V_{BAT} Power OFF. - 13 - REV.: X01 2016/09/30 ## 9.2 APPLICATION CIRCUIT ## (Charge Pump) ### **Recommend components:** C1, C6: 4.7uF/16V(0805) C2,C3,C4,C5: 1uF/16V(0603) R1: 390k ohm (0603) 1% This circuit is for 4 wire SPI interface. ### 9.3 COMMAND TABLE Refer to SSD1316Z IC Spec. - 14 - REV.: X01 2016/09/30 # **10. RELIABILITY TEST CONDITIONS** | No. | Items | Specification | Quantity | |-----|--|---|----------| | 1 | High temp. (Non-operation) | 85℃, 240hrs | 5 | | 2 | High temp. (Operation) | 70℃, 120hrs | 5 | | 3 | Low temp. (Operation) | -40℃, 120hrs | 5 | | 4 | High temp. / High humidity (Operation) | 65℃, 90%RH, 120hrs | 5 | | 5 | Thermal shock (Non-operation) | -40 °C ~85 °C (-40 °C /30min;
transit /3min; 85 °C /30min; transit
/3min) 1cycle: 66min, 100 cycles | 5 | | 6 | Vibration | Frequency: 5~50HZ, 0.5G
Scan rate: 1 oct/min
Time: 2 hrs/axis
Test axis: X, Y, Z | 1 Carton | | 7 | Drop | Height: 120cm
Sequence : 1 angle \ 3 edges and
6 faces
Cycles: 1 | 1 Carton | | 8 | ESD (Non-operation) | Air discharge model, ±8kV, 10 times | 5 | ### Test and measurement conditions - 1. All measurements shall not be started until the specimens attain to temperature stability. - 2. The degradation of Polarizer are ignored for item 1, 4 & 5. ### **Evaluation criteria** - 1. The function test is OK. - 2. No observable defects. - 3. Luminance: > 50% of initial value. - 4. Current consumption: within \pm 50% of initial value. - 15 - REV.: X01 2016/09/30 # 11. EXTERNAL DIMENSION - 16 - REV.: X01 2016/09/30 ## 12. PACKING SPECIFICATION - 17 - REV.: X01 2016/09/30 ## 13. APPENDIXES #### **APPENDIX 1: DEFINITIONS** #### A. DEFINITION OF CHROMATICITY COORDINATE The chromaticity coordinate is defined as the coordinate value on the CIE 1931 color chart for R, G, B, W. #### **B. DEFINITION OF CONTRAST RATIO** The contrast ratio is defined as the following formula: #### C. DEFINITION OF RESPONSE TIME The definition of turn-on response time Tr is the time interval between a pixel reaching 10% of steady state luminance and 90% of steady state luminance. The definition of turn-off response time Tf is the time interval between a pixel reaching 90% of steady state luminance and 10% of steady state luminance. It is shown in Figure 2. Figure 2: Response time - 18 - REV.: X01 2016/09/30 ### D. DEFINITION OF VIEWING ANGLE The viewing angle is defined as Figure 3. Horizontal and vertical (H & V) angles are determined for viewing directions where luminance varies by 50% of the perpendicular value. Figure 3: Viewing Angle - 19 - REV.: X01 2016/09/30 ### **APPENDIX 2: MEASUREMENT APPARATUS** ### A. LUMINANCE/COLOR COORDINATE PHOTO RESEARCH PR-670, MINOLTA CS-100 ### **B. CONTRAST / RESPONSE TIME / VIEW ANGLE** **WESTAR CORPORATION FPM-510** - 20 - REV.: X01 2016/09/30 # C. ESD ON AIR DISCHARGE MODE - 21 - REV.: X01 2016/09/30 ### **APPENDIX 3: PRECAUTIONS FOR USING THE OLED MODULE** # Precautions for Handling - 1. When handling the module, wear powder-free antistatic rubber finger cots, and be careful not to bend and twist it. - 2. The OLED module is consisted of glass and film, and it should avoid pressure, strong impact, or being dropped from a high position. - 3. The OLED module is an electronic component and is subject to damage caused by Electro Static Discharge (ESD). And hence normal ESD precautions must be taken when handling it. Also, appropriate ESD protective environment must be administered and maintained in the production line. When handling and assembling the panel, wear an antistatic wrist strap with the alligator clip attached to the ground to prevent ESD damage on the panel. Antistatic wrist strap should touch human body directly instead of gloves. (See below photos). - 4. Take out the panel one by one from the holding trays for assembly, and never put the panel on top of another one to avoid the scratch. - 5. Avoid jerk and excessive bend on TAB/FPC/COF, and be careful not to let foreign matter or bezel damage the film. - 6. When handling and assembling the module (panel + IC), grab the panel, not the TAB/FPC/COF. - 7. Use the tweezers to open the clicks on the connector of PCB before the insertion of FPC/COF, and click them back in. Once the FPC/COF sits properly in the connector, use the tweezers to avoid the damages. - 22 - REV.: X01 2016/09/30 8. Please do not bend the film near the substrate glass. It could cause film peeling and TAB/FPC/COF damage. For TAB, It should bend the slit area as actual OLED it is. For FPC or COF, it is suggested to follow below pictures for instruction (distance between substrate glass and bending area >1.5mm; R>0.5mm). - 23 - REV.: X01 2016/09/30 9. Avoid bending the film at IC bonding area. It could damage the IC ILB bonding. It should avoid bending the IC seal area. Please keep the bending distance >1.5mm. 10. Use both thumbs to insert COF into the connector when assembling the panel. Please refer to the photo. - 24 - REV.: X01 2016/09/30 - 11. Do not wipe the pin of film and polarizer with the dry or hard materials that will damage the surface. When cleaning the display surface, use the soft cloth with solvent, IPA or alcohol, to clean. - 12. Protection film is applied to the surface of OLED panel to avoid the scratch. Please remove the protective film before assembling it. If the OLED panel has been stored for a long time, the residue adhesive material of the protective film may remain on the display surface after remove the protective film. Please use the soft cloth with solvent, IPA or alcohol, to clean. - 13. When hand or hot-bar soldering TAB/FPC onto PCB, make sure the temperature and timing profiles to meet the requirements of soldering specification (the specification depends on the application or optimized by customer) to prevent the damage of IC pins by inappropriate soldering. - 14. Solder residues arise from soldering process have to be cleaned up thoroughly before the module assembly. - 15. Use the voltage and current settings listed in the specification to do the function test after the module assembly. - 16. Suggestion for soldering process: - i. TAB Lead- free soldering hot bar process - 1. Use pulse heated bonding tool equipment - 2. Material: Sn/Ag/Cu lead-free solder paste with typical 25um thickness on PCB pad. The TAB pin size and shape may be different, please base on the production line to adjust the thickness of PCB pad and temperature. - 3. Bonding Force:--4kg per centimeter square as the starting point. - 4. Suggested bonding tool temperature & time profile is as below for reference. Since there are differences in TAB soldering pins, soldering technicians' skills, mechanism...etc., the soldering conditions must be adequately tuned. - 25 - REV.: X01 2016/09/30 - ii. TAB Lead- free soldering wire process In case of manual soldering (Lead- free solder wire) - 1. Solder wire contact iron directly: 280±5°C at 3-5secs - 2. Solder wire contact TAB lead directly (near iron but not contact): 380±5 ℃, 3-5secs - 3. Since there are differences in TAB soldering pins, soldering technicians' skills, mechanism...etc., the soldering conditions must be adequately tuned. - iii. High temperature will result in rapid heat conduction to IC and might cause damage to IC, so please keep the temperature below 380 °C. Also, avoid damaging the polyimide and solder resist which might take place at high temperatures. Refold cycles base on the de-soldering status, if the plating of pin was damaged, it can not be used again. - 26 - REV.: X01 2016/09/30 # Precautions for Electrical ### 1. Design using the settings in the specification It is very important to design and operate the panel using the settings listed in the specification. It includes voltage, current, frame rate and duty cycle... etc. Operation the OLED outside the range of the specification should be entirely avoided to ensure proper operation of the OLED. #### 2. Maximum Ratings To ensure the proper operation of the panel, never design the panel with parameters running over the maximum ratings listed in the specification. Also the logic voltages such as VIL and VIH have to be within the specified range in the specification to prevent any improper operation of the panel. #### 3. Power on/off procedure To avoid any inadvertent effects resulting from inappropriate power on/off operations, please follow the directions of power on/off procedure on page 6. Any operation that does not comply with the procedure could cause permanent damage of the IC and should be avoided. When the logic power is not on, do not activate any input signal. Abrupt shutdown of power to the module, while the OLED panel is on, would cause OLED panel malfunction. - 27 - REV.: X01 2016/09/30 ### 4. Power savings To save power consumption of the OLED, please use partial display or sleep mode when the panel is not fully activated. Also, if possible, make the black background to save power. The OLED is a self-luminous device and a particular pixel cluster or image can be lit on via software control. So power savings can be achieved by partial display or dimming down the luminance. Depending on the application, the user can choose among Ultra Bright Mode, Normal Operation Mode, and Sleeping Mode. The power consumption is almost in directly proportion to the brightness of the panel, and also in directly proportion to the number of pixels lit on the panel. The customer can save the power by the use of black background and sleeping mode. One benefit from using these design schemes is the extension of the OLED lifetime. #### 5. Adjusting the luminance of the panel Although there are a couple of ways to adjust the luminance of the panel, it is strongly recommended that the customer change the contrast setting to adjust the luminance of the panel. Adjusting voltages to achieve desired luminance is not allowed. Be aware that the adjustment of luminance would accompany the change of lifetime of the panel and its power consumption as well. #### 6. Residual Image (Image Sticking) The OLED is a self-emissive device. As with other self-emissive device or displays consisting of self-emissive pixels, when a static image frozen for a long period of time is changed to another one with all-pixels-on background, residual image or image sticking is noticed by the human eye. Image sticking is due to the luminance difference or contrast between the pixels that were previously turned on and the pixels that are newly turned on. Image sticking depends on the luminance decay curve of the display. The slower the decay, the less prominent the image sticking is. It is strongly recommended that the user employ the following four strategies to minimize image sticking. - 28 - REV.: X01 2016/09/30 - 1. Employ image scrolling or animation to even out the lit-on time of each and every pixel on the display, also could use sleeping mode for reduced the residual image and extend the power capacity. - 2. Minimize the use of all-pixels-on or full white background in their application because when the panel is turned on full white, the image sticking from previously shown patterns is the most revealing. Black background is the best for power savings, greatest visibility. eye appealing, and dazzling displays. - 3. Avoid displaying the characters or menu with high brightness level in a fix position for a long time or repeatedly. If necessary, using the auto fadeout technology. - 4. If a static logo is used in the reliability test, change the pattern into its inverse (i.e., turn off the while pixels and turn on the previously unlit pixels) and freeze the inverse pattern as long as the original logo is used, so every pixel on the panel can be lit on for about the same time to minimize image sticking, caused by the differential turn-on time between the original and its reverse patterns. ### Scrolling example REV.: X01 - 29 -2016/09/30 # Precautions for Mechanical ### 1. Cushion or Buffer tape on the cover glass It is strongly recommended to have a cushion or buffer tape to apply on the panel backside and front side when assembling OLED panel into module to protect it from damage due to excessive extraneous forces. It is recommended that a plating conductive layer be used in the housing for EMI/EMC protection. And, the enough space should be reserved for the IC placement if the IC thickness is thicker than the TAB film when customer design the PCB. # 2. Avoid excessive bending of film when handling or designing the panel into the product The bending of TAB/COF/FPC has to follow the precautions indicated in the specification, extra bending or excessive extraneous forces should be avoided to minimize the chances of film damage. If bending the film is necessary, please bend the designated bending area only. Please refer to items 8 and 9 of Precautions for Handling for more information. - 30 - REV.: X01 2016/09/30 # Precautions for Storage and Reliability Test ### 1. Storage Store the packed cartons or packages at 25 ℃±5 ℃, 55%±10%RH. Do not store the OLED module under direct sunlight or UV light. For best panel performance, unpack the cartons and start the production of the panels within six months after the reception of them. ### 2. Reliability Test - 31 - REV.: X01 2016/09/30